Mar 15 13:23 1982 /usr/dbm/dml/mlchanges.doc Page 1

This file is SI0:[LC]lmlchanges.doc

DEC-10 syntax is in quotes "---"; VAX syntax is in twiddles ~---~ .

An identifier is either a sequence of letters,numbers and primes starting
with a letter, or a sequence of special characters. The special characters
are grouped into three classes:

0: Is$™i&
A: -<+:i=#>
B: #?7~@_
@”“ In forming an identifier, every adjacent pair of special character must

’stick’; two special chars stick if they belong to the same class or if
at least one is of class 0, i.e. they will not stick only if one is of
class A and the other one of class B. Moreover the chars of class 0 stick
to the inner side of parenthesis (),[1,{}.

List Operators

The infix operator "." (list cons) is now ~_~.

The infix operator "@" (list append) is now ~::-.

Tokens and Token Lists
Token list quotes "*‘'" are now double quotes ~"~. The following
characters have special meanings in token lists (but not in tokens):
- ~ (blank): separates tokens; -_-~ (underscore): blank (replaces "/S");
~/\~ (escape backslash): empty token (e.g.: "/\ /\" = [*‘*;'*']).
Tokens and token list are printed at the top level in the same form
in which they are read, that is with all the "/" and with no. funny

character inside. The same apply to ~-printtok~ but not to -outtok-.

Primitive functions on tokens are ~explode: tok -> tok list~ and
-implode: tok list -> tok~. Two other primitives have been added
for int-to-ascii conversions: ~explodeascii: tok -> int list~ and
~implodeascii: int list -> tok-.

@N“ The semantic limit on the length of tokens is 64K chars.
The syntactic limit on the length of token quotations is also 64K

chars. There is no syntactic limit on the length of token
list quotations provided that each token meets its maximum length.

However there is a general limitation on the length of a line of
text which implies that a token or token list quotation should be
@” broken by a carriage return at least every 256 characters.

Numbers

Numbers are integers in the range -32767..32768.

Mar 15 13:23 1982 /usr/dbm/dml/mlchanges.doc Page 2

" -3 " is now -~ -3 ~; it is then possible to distinguish
~f(-)~ from ~£(~)-.

Equality

It is unfortunately impossible to use the mathematical definition

of equality, as we want a decidable equality predicate. Hence

equality is considered to be a predefined overloaded operator:

an infinite collection of decidable equality operators,

whose types are instances of ~(x # %) -> bool-.

This definition still gives a great deal of freedom in the choise of the
semantics of ~=~ because we can overload it to the any arbitrary degree.
In the current implementation, equality only works on monotypes which
are not function spaces or isomorphic domains; the rationale for these
restrictions is:

@W“ - If only monotypes are involved, then the compiler
code which does not need to perform run-time type
(consider the polymorphic equality -\a.a=a-: what

produce for it?). Note that not even monomorphic

can produce
checking

code should we
equality can

be compiled as a subroutine; the compiler must produce specialized
in-line code for every occurrence of ~=- or -<>- (inequality).

- Equality on functions is undecidable.

- Equality over isomorphic domains might be implemented as equality over
the corresponding concrete representations.
However in this case we would have troubles in the use of isomorphisms
as abstract types; for example equality would not be transparent to
a changes of representation (e.g. from a int list to a int->int).
Also, if we implement abstract sets by concrete multisets, equality
could distinguish between sets which should be equal, giving dangerous
insights on the chosen representation.

Here are examples of right and wrong comparisons (at the top level):

Right Wrong
() = ()

true = false

3 =3
\a\ = LYY
(2)‘3-‘) = (2"3-‘)
[1 = ([]: int 1list) [1 =11
[1;2] = [3]
inl 3 = (inl 3: int+.) inl 3 = inl 3
inl 3 = inr ()
\a,b. a=b : tok#tok -> bool \a,b. a=b
I =K

(absset[3]) = (absset[3])

Some of the wrong comparisons might be trivially solved at compile-time,

@ ' but where do we stop?

New semantics of declarations

"letrec ---

" is now ~let rec ---~; this gives extra flexibility in

Mar 15 13:23 1982 /usr/dbm/dml/mlchanges.doc Page 3

declarations, like in:
~let a=3 and rec f n = ...f(n-1)... in ===~

The new set of environment operators is:

~b = t~ is just like "b = t" where ~b- is a binder and -t~ is
a term. It exports a single declaration for =~b-.

~A and B~ is just like "A and B": it exports the declarations of
~A~ and ~B~, but the declarations of ~A~ are not
exported into ~B~ and vice versa.

~rec A- the declarations of ~A~ are exported into ~A~ and also
outside ~rec A-~.

~A enc B~ (enclose) the declarations of ~A~ are exported into ~B-
{but not vice versa) and ~A enc B~ exports the declarations
of ~B~ and the declarations of ~A-~ which are not redefined
in ~B~. For example ~let A enc B in C~ is equivalent to
~let A in let B in C~ (but consider ~{A enc B} and {C enc D}-).

~A ins B~ (inside) the declarations of ~A~ are exported into ~B~
(and not vice versa) but -A ins B~ only exports the
declarations of ~B~. This means that ~A~ defines a set
of own variables for -~B-.

~A with B~ behaves like ~enc~ on types and like ~ins~ on values;
useful to define abstract types where the abstract
type itself is exported but the isomorphism is hidden.

~A ext B~ (extend) is just ~B enc A-.

~A own B~ is just ~B ins A-.

~type A- declares a new set of types. Note that ~A- can contain
all the environment operators except ~type~ and -~with-~.
Mixing type and value declarations is useful in defining
abstract types.

~b <=> t~ (only within a ~type-~ declaration) creates an isomorphism
between the type binder -b~ and the type term ~t~. It
exports a type identifier ~b~ and two function identifiers
~absb~ and ~repb-. Together with -ins~ or =~with-~ can
produce abstract types.

Notes:

It is now possible to decide whether or not to export the
abstract type together with its operators: the program

~let type b <=> t

ins op1=... and opn=...~
does not export the type ~b~ which is hidden by ~ins~-, while

~let type b <=> t ~let type b <=> t
ins {type b = b} == with opi=...
and op1=... and opn=...~ and opn=...~

exports abstract type ~b~ (by a defined type =~b~ or directly).

It isn’t allowed to use ~ins~ (or ~with~) within a ~rec~, like in
~rec {... ins ...}~. This can be justified as follows:

~let A ins b=t~ is equivalent to ~let b=let A in t~; hence

~let rec {A ins b=t}~ is ~let rec {b=let A in t}~ which is

not allowed in ML as recursive declarations must have \-terms

on the right hand side. Allowing -rec ins~ also introduces

extra complexity in implementations without any apparent gain
because we can always rephrase ~rec (A ins B)~ as ~A ins rec B~
(A would not be recursive in any case).

Mar 15 13:23 1982 /usr/dbm/dml/mlchanges.doc Page 4

It is not allowed to use ~=~ within a ~rec type~ declaration:
~<=>~ must be used instead (note however that ~<=>~ can be
used in non recursive declarations). A semantic justification
is that recursive domains work only up to isomorphism.

From a pragmatic point of view ~=~ in a ~rec type~ forces

the typechecker to work on circular structures, which is not

appealing.

New syntax of declarations

- - - - - - s N o M e e e e S e e e e e e - e

This is a semantics-preserving translation table:

"lettype ---"
"letree ---"
"abstype B1 = T1
and ...
and Bn = Tn
with ---"

"absrectype B1 = T1

and

and Bn = Tn
with ---"

==> ~let type
==> ~let rec
~let type
and
==> and

with ----~

-let rec type B1 <=> T1

and
and
with ---~

n
[
\4

Similar translations apply to "where".

The syntax of declarations

Decl ::=
(Bind | FunBind [":" Typel) "=" Term |
Decl ("and” | "enc"” | "ext" | "ins" | "own" | "with") Decl
"rec" Decl |
"type" TypeDecl |
Il{l' Decl Il}ll.
TypeDecl ::=
TypeBind ("=" | "<=>") Type | -
TypeDecl ("and” | "enc" | "ext"™ | "ins" | "own"
"rec" TypeDecl |
"{"™ TypeDecl "}".
where the binding power of operators is:
(and) > (rec = type) > (enc = ext = ins = own = with)
and the infix ones are right associative. Ex:
~let rec fa=...andgb= ... ingx = ... and y =
~let {{rec {f a = ... and {gb = ...}} ins {x =

Restrictions:

is now:

B1 <=> T1

Bn <=> Tn

Bn <=> Tn

) TypeDecl

... and {y =

means:

NS &

Mar 15 13:23 1982 /usr/dbm/dml/mlchanges.doc Page 5

~rec {... ins ...}~ is illegal (no ~ins~ (or -with~) within a -~-rec~)
~rec type ... = ...~ is illegal (you must use ~<=>~ within
a ~rec type-~ or ~type rec~)

Iteration

The iterative forms of failure ("!" and "!!") have been abolished.
The iterative conditional (if-then-loop) will be reintroduced soon.

References

There is a type ~* ref~ with operations

~ref : * -> % ref-~ (create a new reference)
~-@ ¢t » ref -> =~ (dereferencing)
~i= : s ref # x -> .~ (assignment)

The "letref" feature is not supported; "letref a = 3 in a:=a+1"
must now be done by ~let a = ref 3 in a:=@a+1-~.
Note also that there is no varstruct facility on the left of ~:=~.
On the other hand, some restrictions on the use of "letref"
do not apply to ~ref~; for example it is possible to write
at the top level ~let a = ref[];~ while "letref a = [] : int list;"
must specify a monotype for "[]".
The new references can be inserted in data structures at any level.
Arrays (with linear access time) can be defined as:

~let type * array <=> * ref list-~.

Labelled Types

Labelled products and sums have been introduced; they model respectively
records and variants.

- RECORDS.
A record is a collection of unordered named fields:

(la1=t1; ... ; an=tni) n>=0

where ‘ai' are fields selectors (identifiers) and ‘ti‘' are values (terms).
The type of a record is a labelled unordered product:

(ta1=t1; ... 3 an=tni) : (la1:T1; ... ; an:Tni) where ti : Ti
A record field can be selected by its field name;
(la1=t1; ... ; an=tni).ai = ti 3

Application of a function to a record gives a sort of call-by-keyword
facility, because records are unordered:

(\(la=a; b=bl). a,b) (ib=2; a=1!) = 1,2

When a record is used in a varstruct, the effect of a WITH statement
is obtained.

- VARIANTS.
A variant type is an unordered disjoint union of types:

Mar 15 13:23 1982 /usr/dbm/dml/mlchanges.doc Page 6

[{a1:T1; ... ; an:Tni] n>=0

an object of this type embodies exactly one of the possible
alternatives offered by the type:

[ia1=t1i] , ... , [lan=tni] where ti : Ti
we can ask whether a variant object ‘is‘' one of the alternatives:
([la=ti] is a) = true ([la=ti] is b) = false
and then extract its content:
([la=ti] as a) = t ([ia=ti] as b) fails
Variants can be used in varstructs, for example:
(\[la=ail. a) = (\x. x as a)
A CASE statement is provided:
case x of [ia1=v1. t1; ... ; an=vn. tni]
where v1...vn are varstructs; for example:
case t: [iIde: tok;
Lamb: (iBind: tok; Body: Termi);
Appl: (iFun: Term; Arg: Termi) |
of [|Ide=name. outtok name;
Lamb=(iBind=Bind; Body=Body!).
(outtok*(\‘'; outtok Bind; outtok'. ‘'; Print Body; outtok')‘);

Appl=(| Fun=Fun; Arg=Argi).
(outtok*(‘; Print Fun; outtok' ‘'; Print Arg; outtok‘')‘') i]

1

- ABBREVIATIONS.

In terms and varstructs:
(ilal) = (la=al)
[ial] = [ta=()i]

In types:

(tal) = (i
[iail = [

In case statements

[ia. ti] = [

a

)
.1l

a
a
a=(). ti]

Note that the abbreviations for variants are intended to model
enumerated types:

let type color = [ired; green; blueil]; [iredi] : color

- RESTRICTIONS.

It is not allowed to write something like ~\x. x.a~ unless the type
of ~x~ is further specified by the context; the typechecker must
be able to infer exactly the name and type of all the fields

Mar 15 13:23 1982 /usr/dbm/dml/mlchanges.doc Page 7

of every record-object (i.e. every record-object must have a RIGID
type, as explained below). This restriction is not due to typecheck
problems but only to efficiency considerations. This restriction
allows the compiler to generate efficient code for field selection
(i.e. direct access, as opposed to associative search).

It is not allowed to write something like -[ibluei]- unless the type

of ~[ibluei]~ is further specified by the context; the typechecker must
be able to infer exactly the name and type of all the variants

contained in the type of every variant-object (i.e. every variant-object
must have a RIGID type, as explained below). This restriction too is only
due to efficiency considerations so that the compiler can generate
efficient code for the case statement (i.e. a jump table as opposed to

a sequence of if-then-else).

- TYPECHECKING.
Partially specified records and variants are called FLEXIBLE,
while fully specified ones are RIGID, in much the same way
as we might call (a+b) a rigid binary dijoint sum and (a+b+%) a
flexible binary dijoint sum. There is no way to express syntactically
this distinction (as an attempt to keep things simple) but it
is sometimes useful to know the default actions taken by the
typechecker. The point is that two rigid types will typecheck
only if they have the same named fields, while they will
typecheck to the ‘union’ of their fields if both of them are
flexible. If only one is flexible, the fields of the flexible
type must be included in the fields of the rigid one.

Here are the rules: a record constant has a rigid type; a variant
constant has a flexible type; -x.a~, -x is a~ and ~x as a~ assign
a flexible type to -x-; type definitions -let type r=(i...!) and
v=[i...1]- and type specifications -r:(i...1),v:[l...1]1- assign
rigid types both to ~r~ and to ~v~. The consequences are sometimes
intriguing.

Sequencing

Sequencing of terms "

~(e1; ... jen)-~.
All the side effecting primitives return now ~()- (they were
identity functions):

e1; ... j;en" requires extra parenthesis

= : #x yef # % ->
printdot : . -> .

printbool : bool -> .
printint : dint -> .
printtok : tok -> .
outtok : tok =-> .

thus it is possible to eliminate the extra ~()~ at the end of
sequencings, which where needed in cases like:
"x => a:=true; b:=0; () | a:=false; c:='-‘; ()". It is now:

~-x => (a:=true; b:=0) | (a:=false; c:=‘-‘)~.

Mar 15 13:23 1982 /usr/dbm/dml/mlchanges.doc Page 8

Fix operators

Local prefixes,infixes,suffixes and nonfixes can be declared by:

~syntax prefix do
infix <--=--- >
suffix square
nonfix +

in ... -

They only operate in the scope - ... - above and can be used as fixes
in declarations. Both identifiers (-abc123’~) and symbols (~-<-->-~)
are legal variables, and they can have any fixity.

Type fixes can be independently defined by ~syntax type ... in ...~.
Independently means that ~++-, for example, can be both an infix
function and a prefix type operator.

No error is ever given because of misplaced fix operators;
when a fix operator is out of place it is taken as a nonfix
(Ex: _[+; —; '.'; /]- ; -’,’_ ; "\=,a.,b. a.=b").

Garbage Collection
There is a primitive identity function ~collect: * -> =-~,
The message ‘Collecting’ is printed just before collection.

