
Culprits:
 A Simple Approach to

Better Type Error
Messages

David MacQueen
University of Chicago

IFIP WG 2.8 Meeting, 2003

The Problem
Type errors in ML (Haskell) can be difficult to interpret.

 Long chains of unification can propagate types over long
distances:

introduces τ1

conflict between type constructors from

 τ1 and τ2 detected

introduces τ2

(1)

(2)

(3)

Typical error message describes the expression (3) and
types of its subexpressions (e.g. function and argument).

Example

1 fun f x =
2 let val y = nil :: x
3 fun g(u :: _) = u + 1
4 fun h(v :: t) = g(rev t)
5 in h x
6 end

Error [line 5]: function and argument disagree
 Expression: h x
 Function type: int list -> int
 Argument type: ‘X list list

Origins and Paths

Two type constructors conflict:

 int from int list -> int

 list from X list list -> int

1. Where did these constructors originate?

2. How did they come together? (propagation paths)

Some History

Many papers have addressed this general problem, starting
with Wand [FPCA 198?].

A couple of recent examples:

 Discriminative sum types locate the source of type errors
 Matthias Neubauer, Peter Thiemann [ICFP 2003]

 Type error slicing in implicitly typed higher-order languages
 Christian Haack (DePaul Univ) [MPLS 2003]

Common problem is that they provide too much information
and often involve complex algorithms, substantial overhead
during type checking, or multi-pass type checking.

Analysis of example
1 fun f x =
2 let val y = nil :: x
3 fun g(u :: _) = u + 1
4 fun h(v :: t) = g(rev t)
5 in h x
6 end

Origins:
 list <-- nil [line 2]
 int <-- + [line 3]

Propagation:
 list : nil -> :: -> x
 int : + -> u -> g -> rev -> t -> h

We’ll call the occurrences of nil and + the culprits.

Claim

The most valuable information is the location of the culprits.

The propagation paths can be long, but in practice are usually
obvious (or even unnecessary).

Culprit Identification Algorithm

1. Mark each type expression with the location of the source
 construct that introduces it.

 nil : (X list)nil

 + : (int * int -> int)+

2. During unification, propagate the location annotations downward.
 In effect, we lazily transform

 (int * int -> int)+ to int+ *+ int+ ->+ int+

3. If unification fails with conflicting constructors, the constructors
 have location annotations that identify their origins, which become
 the culprits.

Improved Error Message

Error [line 5]: function and argument disagree
 Expression: h x
 Function type: int[1] list -> int
 Argument type: ‘X list[2] list
 Culprits: [1] fun g(u::_) = u + 1 [line 3]
 [2] val y = nil :: x [line 2]

Circularity Errors

1 fun f x = x x

x : (Y -> Z)x

x : Yx

Error [line 1]: type circularity in function app
 Expression: x x
 Operator type: (Y -> Z)[1]
 Argument type: Y[2]
 Culprits: [1] fun f x = x x [line 1]
 [2] fun f x = x x [line 1]

Implementation

First implemented with Laurent Thiery around 1994, using
Centaur based SML environment to display locations of
error detection and culprits.

Reimplemented in 2003 with vanilla text user presentation.

Types:
datatype ty
 = VARty of tyvar
 | CONty of tycon * ty list
 | POLYty of {sign: polysign, tyfun: tyfun}
 | ...
 | MARKty of ty * SourceMap.region

Unify:
val unifyTy : Types.ty * SourceMap.region *
 Types.ty * SourceMap.region
 -> unit

Conclusion

Preliminary experience shows that adding culprits to error
messages is a major help. In a large majority of cases where a
type error message is puzzling, adding the culprits makes the
source of the error obvious. Furthermore, the added mechanism
to support this is quite simple and light-weight.

Claim is that adding propagation paths yields a much smaller
improvement and is probably not worth the additional complexity --
except perhaps for training novice programmers.

