©™

‘_
s,

October, 1924,

The Standard ML Core lLangusge

Robin Mitner

University of Edinburgh

1. Introduction
1.1 How this proposal evolved; 1.2 Design principles; 1.3 An example.
2. The bare lLanguage
2.1 Discussion; 2.2 Reserved words; 2.3 Special constants; 2.4 Identifiers;
2.5 Comments; 2.6 Lexical analysis; 2.7 Delimiters; 2.8 The bare syntax.
3. Evaluation
3.1 Enviromments and values; 3.2 Enviromment manipulation;
3.3 Matching patterns; 3.4 Applying & match;
3.5 Evaluation of expressions; 3.6 Evaluation of value bindings;
3.7 Evaluation of type bindings; 3.8 Evaluation of exception bindings;
3.9 Evaluation of declarations; 3.10 Evaluation of programs.
4, Directives
5. 8tandard bindings
5.1 Standard type constructors; 5.2 Standard functions and constants;
5.3 Standard exceptions.
6. Standard derived forms
6.1 Expressions and patterns; 6.2 Bindings and declarations.
7. References, and equality
7.1 References and assignment; 7.2 Equality.
B. Exceptions
8.1 Discussion; 8.2 Derived forms; B.3 An example;
8.4 Some pathological examples.
8. Type-checking
10. Syntactic restrictions
11. Conclusion
REFERENCES

APPENDICES: 1. Syntax: Expressions and Pattarns

2. Syntax: Types, Bindings, Declarations and Programs
3. Predeclared Variables and Constructors

"

1. Introduction

1.1 How this proposal evolved

ML is a strongly typed functional programming language, which has been used
by a number of people for serious work during the Last few years [1]. At the
same time HOPE, designed by Rod Burstall and his group, has been similarly used
[2]. The original DEC-10 ML was incomplete in Some ways, redundant in others.
Some of these inadequacies were remedied by Cardelli in his VAX version; others
could be put right by importing ideas from HOPE.

In April '83, prompted by Bernard Sufrin, I wrote a tentative proposal to
consolidate ML, and while doing so became convinced that this consolidation was
possible while still keeping its character. The main strengthening came fram
generalising the "varstructs" of ML — the patterns of formal parameters — to the
patterns of HOPE, which are extendible by the declaration of new data types.
Many pecple immediately discussed the initial proposal. It was extremely Lucky
that we managed to have several separate discussions, in Large and small groups,
in the few succeeding months; we could not have chosen a better time to do the
job. Also, Luca Cardelli very generously offered to freeze his detailed draft
ML manual [3] until this proposal was worked out.

The proposal went through a second draft, on which there were further
discussions. The results of these discussions were of two kinds. First, it
became clear that two areas were still contentious: input/output and facilities
for separate compilation. Second, many points were brought up about the
remaining core of the Llanguage, and these were almost all questions of fine
detail. The conclusion was rather clear; it was obviously better to present at
first a definition of a Core lLanguage without the two contentious areas. This
course is further justified by the fact that the Core language appears to be
almost completely unaffected by the choice of input/output primitives and of
separate compilation constructs. Also, there are already strong and carefully
considered proposals, from Cardelli and MacGueen respectively, on how to design
these two vital facilities; together with the Core they will form a complete
language definition which can be adopted in its entirety, while still Lleaving
open the possibility of adopting only parts of it. But the Strong hope is that
the whole will be very widely accepted.

A third draft [4] of the Core Language was discussed in detail in a three-day
design meeting at Edinburgh in June '84, attended by nine of the people
mentioned below; some final points were ironed out, and the present Standard is
the outcome. The meeting also looked in detail at the MacQueen Modules proposal
and the Cardelli input/output proposal, and agreed on the essentials of these
facilities to be embodied soon in a working definition.

The main contributors to the proposed Language, through their design work on
ML and on HOPE, are:

Rod Burstall, Luca Cardelli, Michael Gorddn, Dav{d MacQueen,
Robin Milner, Lockwood Morris, Malcolm Newey, Christopher Wadsworth.

The final proposal also owes much to criticisms and suggestions from many other
people: Guy Copusineau, Jim Hook, Gerard Huet, Robert Milne, Kevin Mitchell,
Brian Monahan, Peter Mosses, Alan Mycroft, Larry Paulson, David Rydeheard, Don
Sannella, David Schmidt, John Scott, Stefan Sokolowski, Bernard Sufrin, Philip
Wadler. Most of them have expressed strong support for most of the design; any
inadequacies which remain are my fault, but I have tried to represent the
consensus.

»

1.2 Design principles

The proposed ML is not intended to be the functional Llanguage. There are too
many degrees of freedom for such a thing to exist: lLazy or eager evaluation,
presence or absence of references and assignment, whether and how to handle
exceptions, types-as—parameters or polymorphic type—checking, and so on. Nor is
the Language or its implementation meant to be a commercial product. It aims to
be a means for propagating the craft of functional progremming and a vehicle for
further research into the design of functional Languages.

The over-riding design principle is to restrict the Core Llanguage to ideas
which are simple and wel l-understood, and also well-tried — either in previocus
versions of ML or in other functional languages (the main other source being
HOPE, mainly for 1its argument—matching constructs). One effect of this
principle has been the omission of polymorphic references and assignment. There
is indeed an elegant and sound scheme for polymorphic assignment worked out by
Luis Damas; unfortunately it is not yet documented, and we will do better to
wait for a clear exposition either from Damas or - as promised — from David
MecQueen. In the proposed Llanguage much can be done to get the polymorphic
effect by passing assignment functions as parameters; it is worthwhile
experimenting with this method, and there is further advantage in keeping to the
simple polymorphic type-checking discipline which derives from Curry's
Combinatory Logic via Hindley.

A second design principle is to generalise well-tried ideas where the
generalisation is apparently natural. This has been applied in generalising ML
"varstructs" to HOPE patterns, in broadening the structure of declarations
{following Cardelli's deciaration connectives which go back to Robert Milne's
Ph.D. Thesis) and in allowing exceptions which carry values of arbitrary
polymorphic type. It should be pointed out here that a difficult decision had
to be made concerning HOPE's treatment of data types — present only in embryonic
form in the original ML — and the Llabelled records and variants which Caprdelli
introduced in his VAX version. The latter have definite advantages which the
former lack; on the other hand, the HOPE treatment is well-rounded in its own
terms. Though a combination of these features is possible, it seemed (at least
to me, but some disagreed!) to entail too rich a Llanguage for the present
definition. Thus the HOPE treatment is fully adopted here. However, at the
design meeting of June '84 it was agreed to experiment with at Least two
di fferent ways of adding Label led records to the Core as a smooth extension, and
to adopt one of these schemes as standard in the near future.

A third principle is to specify the language completely, so that programs
will port between correct implementations with minimum fuss. This entails,
first, precise concrete syntax (abstract syntax is in some senses more important
- but we do not all have structure editors yet, and humans still communicate
among themselves in concrete syntax!); second, it entails exact evaluation rules
(e.g. we must specify the order of evaluation of two expressions, one applied to
the other, just because of the exception mechanism). The present document is
hot a full Llanguage definition; the Core Language will only become a full
Lagguage when the proposals for input/output and for separate compilation 8re
added.

1.3 An_example

The following declaration illustrates some constructs of the Core Language.
A longer expository paper should contain many more examples; here, we hope only
to draw attention to some of the Less familiar ideas.

The example sets up the abstract type 'a dictionary , in which each entry
associates an item (of arbitrary type 'a) with a key (an integer). Besides the
null dictionary, the operations provided are for Looking up a key, and for
adding a new entry which overrides any old entry with the same key. A natural
representation is by a List of key-item pairs, ordered by key.

abstype 'a dictionary =
data dict of (int * 'a)list {dict is the abstraction}
{ constructor.}
with
val nulldict = dict nil

{The function Lookup may}

exception lLookup : unit { raise an exception.}

val Lookup (key:int) {'a is the result type. !
(dict entrylist) :'a =

let val rec search nil = raise Lookup {An auxiliary clausal }

| search {(k,item)::entries) = { function declaration.}

if key=k then qitem
else if key<k then raise Lookup
else search entries

in search entrylist

end
. yal enter (newentry as (key,item)) {A layered pattern. }
. (dict entrylist) :'a dictionary, =
let val rec update nil = [newentry] {A singleton Llist. }

| update ((entry as (k,_))::entries) =
if key=k then newentry::entries
else if key<k then newentry::entry::entries
else entry::update entries
in dict(update entrylist)

end

end {end of dictionary}

After the declaration is evaluated, five identifier bindings are reported, and
recorded in the top-level environment. They consist of the type binding of

dictionary, the exception binding of Lookup, and three yalue bindings with their
types:

nultdict : 'a dictionary
lookup : int => 'a dictionary -> 's
enter : int ¥ 'a -> 'a dictionary —=> 'a dictionary

The layered pattern construct "as" was first introduced in HOPE, and yields both
brevity and efficiency. The discerning reader may be able to find one further
use for it in the declaration. "

Note: the abstype construct is in the Core language for completeness, but is
likely to be subsumed by Modules.

2. The bare language

2.1 Discussion

It is convenient to present the language first in a bare form, containing
enough on which to base the semantic description given in Section 3. Things
omitted from the bare languape description are:

(1) Derived syntactic forms, whose meaning derives from their equivalent
forms in the bare language (Section B);

(2) Directives for introducing infix jdentifier status (Section 4);
(3) Standard bindings (Section 5];

(4) References and equality (Section 7);

(5) Type-checking (Section 8].

The principal syntactic objects are expressions and declarations. The
composite expression forms are application, type constraint, tupling, raising
and handling exceptions, local declaration (using lLet) and function abstraction.

Another important syntactic class is the class of patterns; these are
essentially expressions containing only variables ana value constructors, and
are used to create value bindings. Declarations may declare value varisbles
(using value bindings), types with associated constructors or opsrations (using
type bindings), and exceptions (using exception bindings). Apart from this, one
declaration may be Llocal to another (using _Llocal), and & sequence of
declarations is allowed as & single declaration.

An ML program is a series of declarations, called top—level declarations,
dec1 ; .. decn ;

each terminated by a semicolon (where each deci is not itself of the form
"dec ; dec'"). In evaluating a program, the bindings created by dec1 are
reported before dec2 is evaluated, and so on. In the complete language, an
expression occurring in place of any deci is an abbreviated form (see Section
6.2) for a declaration binding the expression value to the variable "it"; such
expressions are called top—-level expressions.

The bare syntax is in Section 2.B below; first we consider Lexical matters.

2.2 Reserved words

The following are the reserved words used in the Core Language. They may not
(except =) be used as identifiers. In this document the alphabetic reserved
words are always underlined.

abstype and andalso as case do data else
end exception fun handle if in infix
infixr Llet Local nonfix of op orelse
raise rec then type val with while

()Y o1, 5 1 1l = = ?

2.3 Special constants

The unique object of type unit is denoted by the special constant (].

An integer constant is any non—empty sequence of digits, possibly preceded by
a negation symbol ().

A real constant is an integer constant, possibly followed by a point (.) and
one or more digits, possibly followed by an exponent symbol (E) and an integer
constant; at Least one of the optional parts must occur, hence no integer
constant is a real constant. Examples: 0.7 , ~“3.32EB , 3E"7 . Non-examples:
23, .3, 4.5, 1E2.0 .

A string constant is a sequence, between quotes ("), of zero or more
printable characters, spaces or escape sequences. Each escape sequence is
introduced by the escape character \, and stands for a character sequence. The
allowed escape sequences are as follows (all other uses of \ being incorrect):

\n A single character interpreted by the system as end-of-line.
\t Tab.

\"c The control character ¢, for any appropriate c.

\ddd The single character with ASCII code ddd (3 decimal digits).
\ll 1] .

\\ \

\f..f\ This sequence is ignored, where f..f stands for a sequence of one
or more formatting characters (a subset of the non-printable
characters including at Least space, tab, newline, formfeed].
This allows one to write long strings on more than one Line, by
writing \ at the end of one Line and at the start of the next.

2.4 Identifiers

Identifiers are used to stand for five different syntax classes which, if we
had a large enough character set, would be disjoint:

value variables (var) type variables (tyvar]
value constructors (con) type constructors (tycon)
exception names (exn)

An identifier is either alphanumeric: any sequence of Lletters, digits, primes
{') and underbars (_) starting with a lLetter or prime, or symbolic: any sequence
of the following symbols

| %9 & 8 + - / :+ < = > 2?2 @ \ ~ * ~ | =

In either case, however, reserved words are excluded. This means that for
example ? and | are not identifiers, but ?? ana |=| are identifiers. The only
exception to this rule is that the symbol =, which is a reserved word, is also
al lowed as an identifier to stand for the equality predicate (see Section 7.2).
The identifier = may not be rebound; this precludes any syntactic ambiguity.

A type variable (tyvar] may be any alphanumeric identifier starting with a
prime. The other four classes (var, con, tycon, exn) are represented by
identifiers not starting with a prime. Thus type variables are disjoint from
the other four classes. Otherwise, the syntax cless of an occurrence of
identifier id is determined thus:

(1) In types, id is a type constructor, and must be within the scope of the type
binding which introduced it.

(2) Following exception, raise or handle, or in the context "exception ..=id",
id is an exception name.

(3) Elsewhere, id is a value constructor if it occurs in the scope of a type
binding which introduced it as such, otherwise it is a value variable.

It follows from (3) that no value binding can make a hole in the scope of a
value constrfuctor by introducing the same identifier as a variable; this is
because, in the scope of the declaration which introduces id as & value
constructor, any occurrence of id in a pattern is interpreted as the constructor
and not as the binding occurrence of a new variable.

The syntax—-classes var, con, tycon and exn all depend on which bindings are
in force, but onty the classes var and con are necessarily disjoint. The
context determmines (as described abovel to which class each identifier
occurrence belongs.

In the Core language, an identifier may be given infix status by the infix or
infixr directive; this status only pertains to its use as a var or a con. If id
has infix status, then "exp1 id exp2" (resp. "patl id pat2") may occur wherever
the application "id(expl,exp2)" (resp. "id(patl,pat2)") would otherwise occur.
On the other hand, non—infixed occurrences of id must be prefixed by the keyword
"op". Infix status is cancelled by the nonfix directive.

2.5 Comments

A comment is any character sequence within curly brackets {} in which curly
brackets are properly nested. An unmatched } should be detected by the
compi ler.

2.6 Lexjcal analysis

Each item of Lexical analysis is either a reserved word or a special constant
or an identifier; comments and formatting characters separate items (except
within string constants; see Section 2.3) and are otherwise ignored. At each
stage the longest next item is taken.

As a consequence of this simple approach, spaces — or parentheses - are
needed sometimes to separate identifiers and reserved words. Two examples are

a:= lb or a:=(1b) but not a:=lb
(assigning contents of b to a)
=~ :int->int or (“):int->int but not ~“:int->int

(unary minus qualified by its type)

Rules which allow omission of spaces in such examples, such as adopted by
Cardelli in VAX ML, also forbid certain symbol sequences as identifiers and -
more importantly — are hard to remember; it seems better to keep & simple scheme
and tolerate a few extra spaces or parentheses.

2.7 Delimiters

Not all constructs have a terminating reserved word; this would be verbose.
But & compromise has been adopted; end terminates any construct which declares
bindings with Local scope. This involves only the let, local ana abstype
constructs.

2.8 The bare syntax
Conventions
(1) {..} means optional.

(2) For any syntax class s, define s_seq ::= s
(s1, ..,sn) (n21)
(3) Alternatives are in order of decreasing precedence.
(4) L (resp. R) means Left (resp. right) association.
(5) Parentheses may enclose phrases of any named syntax class defined in the table.

EXPRESSIONS exp PATTERNS pat
aexp ::= apat ::=
var (variable) _ {wildcard)
con (constructor) var (variable)
(exp1 , .., expn } (tuple,n>?2) con (constant)
(exp) (patl, .., patn) (tuple,n>2)
' (pat)
exp ::=
aexp (atomic) pat ::=
exp aexp L(application) apat (atamic)
exp : ty L(constraint) con apat L(construction)
raise exn with exp (raise exc'n) pat : ty L{constraint)
let dec in exp end (Local dec'n) var {:ty} as pat (layered)
fun match {function)
exp handle handler R{handlLe exc'ns) VALUE BINDINGS vb
vb ::=
match ::= pat = Bxp (simple)
rulel | ..l rulen (n21) vb1 and ..and vbn (multiple,n>2)
rec vb (recursive)
rule ::=
pat => exp JYPE BINDINGS tb
tb ::=
handlLer ::= {tyvar_seq} tycon
hrulel |l ..l| hrulen (n21) = data constrs (simple)
{tyvar_seq} tycon
hrule ::= = ty (simple)
exn with match tb1 and ..and tbn (multiple,n>2)
? => exp rec tb [(recursive)
DECLARATIONS dec constrs ::=
dec ::= cont {aof ty1} | ..l conn {of tyn}
val vb (values)
tvpe tb {types) EXCEPTION BINDINGS eb
sbstype tb eb ::=
with dec end (sbs. types) exn {:ty} {= exn'} (simple)
exception eb {exceptions) eb1 and ..and ebn (multiple,n>2)
local dec in dec' end (local dec'n)
dect {;} ..decn {;} (sequence,n20) TYPES ty
ty ::=
tyvar (type variable)
{ty_seq} tycon (type constr'n)
PROGRAMS : dect ; ..decn ; tyl * ..¥ tyn (tuple type,n>2)
ty -> ty! R(function type)

The syntax of types binds more tightly than that of expressions, so type
constraints should be parenthesized if not followed by a reserved word.

Each iterated construct (match, handler, ..) extends as far right as possible;
thus e.g. a match within a match may need to be parenthesised.

8

3. Evaluation
3.1 Environments and Values

Evaluation of phrases takes place in the presence of an ENVIRONMENT and a
STORE. An ENVIRONMENT E has two components: a value environment VE associating
values to variables and to value constructors, and an exception environment EE
associating exceptions to exception names. A STORE S associates values to
references, which are themselves values. (A third component of an environment, @
type environment TE, is ignored here since it is relevant only to type-checking
and compilation, not to evaluation.)

An exception e, associated to an exception name exn in any exception
environment, is an object drawn from an infinite set (the nature of 8 is
immaterial, but see Section 3.8). A packet p=(e,v]) is an exception e paired
with a value v, called the excepted value. Neither exceptions nor packets are
values. Besides possibly changing S (by assignment), evaluation of a phrase
returns a result as follows:

Phrase Result
Expression v or p
Value binding VE or p
Type binding VE
Exception binding EE
Declaration E or p

For every phrase except a handle expression, whenever its evaluation demands the
evaluation of an immediate subphrase which returns a packet p as result, no
further evaluation of subphrases occurs and p is also the result of the phrase.
This rule should be remembered while reading the evaluation prules below.

A function value f is a partial function which, given a value, may return a
value or a packet; it may also change the store as a side-effect. Every other
value is either & constant (a nullary constructor), a construction (a
constructor with a value), a tuple or a reference.

3.2 Environment manipulation

We may write <(id1,v1) ..(idn,vn)> for a value environment VE (the idi being
distinct). Then VE(idi) denotes vi, <> is the empty value enviromment, and
VE+VE' means the value enviromment in which the associations of VE' supersede
those of VE. Similarly for exception environments. If E=(VE,EE) and
E'=(VE',EE'), then E+E' means (VE+VE',EE+EE'), E+VE' means E+(VE',<>), etc.
This implLies that an identifier may be associated both in VE and in EE without
conflict.

3.3 Matching patterns

The matching of a pattern pat to a value v either fails or yields a value
environment. Failure is distinct from returning a packet, but a packet will be
returned when all patterns fail in applying a match to a value (see Section
3.4). In the following rules, if any component pattern fails to match then the
whole pattern fails to match.

The following is the effect of matching a pattern pat to a value v, in each
of the cases for pat:

the empty value enviromment <> is returned.

—

var ¢ the value environment <(var,v])> is returned.
con{pat} : if v = con{v'} then pat is matched to v', else failure.

var{:ty} as pat : pat is matched to v returning VE; then <{var,v]}>+VE
is returned.

(patl, ..,patn) : if v=(vl,...,vn) then pati is matched to vi returning
VEi, for each i; then VE1+ ..+VEn is returned.

pat:ty pat is matched to v.

3.4 Applying a match

Assume enviromment E. Applying a match pati=>exp1| ..lpatn=>expn to value
v returns a value or packet as follows:

Each pati is matched to v in turn, from left to right, until one Succeeds
returning VEi; then expi is evaluated in E+VEi. If none succeeds, then the
packet (ematch,(])) is returned, where ematch is the standard exception bound by
predeclaration to the exception name "match". But matches which may fail are to
be detected by the compiler and flagged with a warning; see Section 10(2).

Thus, for sach E, a match denotes a function value.

3.5 Evaluation of expressions

Assume enviromment E=(VE,EE). Evaluating an expression exp returns a value
or packet as follows, in each of the cases for exp:

var : the valtue VE(var) is returned.

con ¢ the value VE(con) is returned.

exp aexp : exp i5 evaluated, returning function value f; then
aexp is evaluated, returning value v; then f(v) is
returned.

(exp1, ..,expn) the expi are evaluated in sequence, from left to
right, returning vi respectively; then (v1, ..,vn)

is returned.

exp is evaluated, returning value v; then packet
(e,v) is returned, where e = EE(exn).

raise exn with exp

exp handle handler

exp is evaluated; if exp returns a value v, then
v is returned; 1if it returns a packet p = (e,v)
then the handling rules of the handler are scanned
from lLeft to right until a rule is found which
satisfies one of two conditions:

(1) it is of form "exn with match" and e=EE(exn),

10

in which case match is applied to v;

(2) it is of form “? => exp'", in which case exp'
is evaluated.

If no such hrule is found, then p is returned.

Let dec in exp end : dec is evaluated, returning E'; then exp is
evatuated in E+E'.

fun match ¢ f is returned, where f is the function of v gained
by applying match to v in environment E.

exp:ty : exp is evaluated.

3.6 Evaluation of value bindings

Assume enviromment E = (VE,EE). Evaluating a value binding vb returns a
value environment VE' or a packet as follows, by cases of vb:

pat = exp : exp is evaluated in E, returning value v; then pat is
matched to v; 1if this returns VE', then VE' is returned,
and if it fails then the packet (ebind,()) is returned, where
ebind is the standard exception bound by predeclaration to
the exception name "bind".

vb1 and ..and vbn : vb1, ..,vbn are evaluated in E from Left to right, returning
VE1, ..,VEn; then VE1+ ..+VEn is returned.
rec vb : vb is evaluated in E', returning VE', where E' = (VE+VE',EE).

Because the values bound by "rec vb" must be function values
(see 10(4)), E' is well defined by "tying knots" (Landin).

3.7 Evaluation’uf type bindings

The components VE and EE of the current enviromment do not affect the
evaluation of type bindings (TE affects their type-checking and compilation).
Evaluating a type binding tb returns a value enviromment VE' (it cannot return a
packet) as follows, by cases of tb:

{tyvar_seq} tycon = data com {of ty1} | ..| conn {of tyn} :
the value environment VE' = <(com,v1]), ..,(conn,yn)> is
returned, where vi is either the constant value coni (if
"of tyi" is absent) or else the function which maps v to
coni(v). Other effects of this type binding are handled
by the compiler or type-checker, not by evaluation.

{tyvar_seql tycon = ty :
the value enviromment VE' = <> is returned. This type
binding has no effect on evaluation; its purpose, in the
Core language, is merely to provide an abbreviation for

a compound type. It may not be qualified by rec.

tb1 and ..snd tbn :t tb1, ..,tbn are evaluated from Left to right, returning
V&1, ..,VEn; then VE' = VE1+ ..+VEn is returned.

rec tb : tb is evaluated. Note again that the raqursion is
handled by type-checking only.,

1

3.8 Evaluation of exception bindings

Assume enviromment E = (VE,EE). The evaluation of an exception binding eb
returns an exception environment EE' as follows, by cases of eb:

exn {:ty} {= exn'} : EE' = <(exn,e)> is returned, where

(1) if exn' is present then e = EE(exn'); this is
a non—generative exception binding since it merely
re-binds an existing exception to exn;

(2) ctherwise e is a previously unused exception (an
object from which the identifier exn is retrievable,
for reporting unhandled exceptions at top-levell;
this is a generative exception binding.

ebl and ..and ebn : eb1l, ..,ebn are evaluated in E from Left to right,
returning EEl, ..,EEn; then EE' = EEF1+..+EEn is returned.

3.9 Evaluation of declarations

Assume environment E = (VE,EE). Evaluating a declaration dec returns an
environment E' or a packet as follows, by cases of dec:

ﬁgl vb : vb is evaluated, returning VE'; then E' = (VE',<>) is returned.
type tb : tb is evaluated, returning VE'; then E' = (VE',<>) is returned.

abstype tb with dec end :
tb is evaluated, returning VE'; then dec is evaluated in E+VE',

returning E'; then E' is returned.
exception eb : eb is evaluated, returning EE'; then E' = (<>,EE') is returned.

Local dect in dec2 end :
dec1.is evaluated, returning E1, then dec2 is evaluated in E+E1,
returning E2; then E' = E2 is returned.

dect1 {;} ..decn {;} :
each deci is evaluated in E+E1+ ..+E[1—1], returning Ei, for i =
1,2, ..,n; then E' = (<>,)+E1+ . .+En is returned. Thus when
n=0 the empty enviromment is returned.

Each declaration is defined to return only the new environment which it makes,
but the effect of a declaration sequence is to accumulate enviromments.

3.10 Evaluation of programs

The evaluation of a program ‘"dec1l ; ..decn ;" takes place in the initial
presence of the standard top-lLevel environment ENVO containing all the standard
bindings (see Section 5). For i>0 the top-lLevel enviromment ENVi, present after
the evaluation of deci in the program, is defined recursively as follows: deci
is evaluated in ENV(i-1) returning enviromnment Ei, and then ENVi = ENV(i-1)+Ei.

12

4. Directives

Directives are included in ML as (syntactically) a subclass of declarations.
They -possess scope, as do all declarations.

There is only one kind of directive in the standard Language, namely those
concerning the infix status of value variables and constructors. Others,
perhaps also concerned with syntactic conventions, may be included in extensions
of the lLanguage. The directives concerning infix status are:

infix{r} {p} id1 ..idn
nonfix idl ..idn

wheére p is a non—-negative integer. The infix and infixr directives introduce
infix status for each idi (as a value variable or constructor), and the nonfix
directive cancels it. The integer p (defaulLt 0) determines the precedence, and
an infixed identifier associates to the Lleft if introduced by infix, to the
right if by infixr. Different infixed identifiers of equal precedence associate
to the Left. As indicated in Appendix 2, the precedence of infixed application
is just weaker than that of application.

While id has infix status, each occurrence of it (as a value varijable or
constructor) must be infixed or else preceded by op. Note that this includes
occurrences of the identifier within patterns, even binding occurrences of
variables.

Several standard functions and constructors have infix status (see Appendix
3) with precedence; these are all Left sssociative except "::".

It may be thought better that the infix status of & variable or constructor
should be established in some way within its binding occurrence, rather than by
a separate directive. However, the use of directives avoids problems in
parsing.

The use of local directives (introduced by let or Llocal)l imposes on the
parser the burden of determining their textual scope. A quite superficial
analysis is enough for this purpose, dus to the use of end to delimit local
scopes.

13

5. Standard bindings

The bindings of this section form the standard top—level environment ENVO.

5.1 Standard type constructors

The bare lLanguage provides the function—-type constructor, —>, and for each n
2 2 a tuple-type eonstructor *n. Type constructors are in general postfixed in
ML, but -> must be infixed, and the n-ary tuple-type constructed from ty1, ..,
tyn must be written “ty1l ¥ ..¥ tyn". Besides these type constructors, the
fol lowing are standard: : :

Type constants (nullary constructors) : unit,bool,int,real,string
Unary type constructors : list,ref

None of the identifiers ->, ¥, unit, bool, int, real, string, Llist, ref may be
redeclared as type constructors.

The constructors unit, bool and Llist are fully defined by the following
assumed declaration

infixr 30 ::

type unit = data ()

and bool = data true | false

and rec 'a List = data niL | op :: of 'a * 'a list

The word "unit" is chosen since the type contains just one value; this is why it
is preferred to the word "void" of ALGOL 6B. Note that it is also (up to
isomorphism) a unit for type tupling, though we do not exploit this isomorphism
by allowing a coercion between the types ty and ty * unit .

The type constants int, real and string are equipped with special constants
as described in Section 2.3. The type constructor ref is for constructing
reference types; see Ssction 7.

5.2 Standard functions and constants

ALl standard functions and constants are Listed in Appendix 3. There is not
a lavish number; we envisage function Libraries provided by each implLementation,
together with the equivalent ML declaration of each function (though the
implementation may be more efficient). In time, Some such Library functions may
accrue to the standard; a Likely candidate for this is a group of array-handling
functions, grouped in a standard declaration of the unary type constructor
"array".

Most of the standard functions and constants are familiar, so we need mention
only a few critical points:

{1) explode yields a Llist of strings of size 1; implode is iterated string
concatenation (*). ord yields the Ascii code number of the first
character of a string; chr yields the Ascii character (as a string of
size 1) corresponding to an integer.

(2) ref is a monomorphic function, but in patterns it may be used
polymorphically, with type 'a =>'a ref .

14

{3) The character functions ord and chr, the arithmetic operators *, /, div,
mod, + and — , and the standard functions floor, sqrt, exp and Ln may
raise standard exceptions (see Section 5.3) whose name in each case is
the same as that of the function. This occurs for ord when the string is
empty; for chr when the character is undefined; and for the others when
the result is undefined or out of range.

(4) The values r =amod d and q = a div d are determined by the condition
d*q + r = a , where either 0<r<d or d<r<0 . Thus the remainder takes
the same sign as the divisor, and has Llesser magnitude. The result of
arctan Llies between +pi/2, and In (the inverse of exp) is the
natural logarithm. The value floor(x]) is the Largest integer < Xx; thus
rounding may be done by floor(x+0.5) .

(5) Two multi-typed functions are included as quick debugging aids. The
function print :ty->ty is an identity function, which as a side-effect
prints its argument exactly as it would be printed at top-level. The
printing caused by "print(exp)" will depend upon the type ascribed to
this particular occurrence of exp ; thus print is not a normal
polymorphic function. The function makestring :ty->string 1is similar,
but instead of printing it returns as a string what print would produce
on the screen.

5.3 Standard exceptions

ALl predeclared exception names are of type unit. There are three special
ones: match, bind and interrupt. These exceptions are raised, respectively, by
failures of matching and binding as explained in Sections 3.4 and 3.6, and by an
interrupt generated (often by the user) outside the program. Note, however,
that match and bind exceptions cannot occur unless the compiler has given a
warning, as detailed in Section 10(2),(3), except in the case of a top-Level
declaration as indicated in 10(3).

The only other predeclared exception names are
ord chir * / div mod + - floor sqrt exp Ln
Each name identifies the corresponding standard function, which is ill-defined
or out of range fTor certain arguments, as detailed in Section 5.2. For example,.

using the derived handle form explained in Section B.2, the expression

3 div x handle div => 10000

will return 10000 when x = 0.

15

6. Standard Derived Forms
6.1 Expressions and Patterns

DERIVED FORM EQUIVALENT FORM

Expressions :

raise exn raise exn with ()
case exp of match {fun match) (exp)

if exp then axp1 else exp2 case exp of true=>exp1 | false=>exp2

exp orelse exp' if exp then true slse exp'
8xp andalso exp' if exp then exp' gelse false
exp ; exp!' case exp of (_) => exp!'
while exp do exp' let val rec f = fun () =>
if exp then (exp'; f()) else ()
in f() end
[exp1 , .., expn] expl:: ..::expn::nil (n20)

Handling rules :

exn => exp exn with (_) => exp

Patterns :

[pat1 , .., patn_1] patl:: ..::patn::nil {n>0)

The derived form may be implemented more efficiently than its equivalent
form, but must be precissly equivalent to it semantically. The type-checking of
each derived form is also defined by that of its equivalent form.

The binding power of all bare and derived forms is shown in Appendix 1. A
semicolon, whether used in declaration sequencing or in expression sequencing,
always has weakest binding power; also a semicolon always terminates a
declaration where this is syntactically possible (thus expression seguencing may
need to be parenthesised).

The shortened raise form is only admissible with exceptions of type unit.
The shortened form of handling rule is appropriate whenever the excepted value
is immaterial, and is therefore (in the full form) matched to the wildcard
pattern.

16

6.2 Bindings and Declarations

DERIVED FORM EQUIVALENT FORM

Value bindings :

var apatl1 ..apatin {:ty} exp1 var = fun x1 => ..fun xn =>
| .. case (x1, .., xn)
| var apatm1 ..apatmn {:tyl = expm of (apati1, .., spatin) => exp1 {:ty}
| ..
| {(apatmt, .., apatmn) => expm {:ty}

{ where the xi are new, and m,n21 }

Declarations :

exp yal it = exp

The derived value binding allows function definitions, possibly Curried, with
several clauses. The derived declaration is only allowed at top-level, for

treating top-level expressions as degenerate declarations; "it" is just a normal
value variable.

17

-

7. BReferences and eguality

—r

7.1 References and assignment

Following Cardelli, references are provided by the type constructor ‘'ref".
Since we are sticking to monomorphic references, there are two overloaded

functions available at all monotypes mty:

(1) ref : mty -> mty ref, which associates (in the store) a new reference
. with its argument value. "ref" is a constructor, and may be used
polymorphically in patterns, with type 'a -> 'a ref .

(2) op := : mty ref * mty -> unit , which associates its first (reference)
argument with its-second (value) argument in the store, and returns () as
result.

The polymorphic contents function "I" is provided, and is equivalent to the
declaration "yal !(ref x)} = x".

7.2 Equality

The overloaded equality function gp = : ety * ety —> bool is available at
all types ety which admit equality, according to the definition below. The
effect of this definition is that equality will only be applied to values which
are built up from references (to arbitrary values) by value constructors,
including of course constant values. On references, equality means identity; on
objects of other types ety, it is defined recursively in the natural way.

The types which admit equality are as follows, assuming that abbreviations
introduced by non-generative type bindings have first been expanded out:

(1) A type ty edmits equality iff it is built from arbitrary refersnce types
by type constructors which admit equality.

(2) The standard type constructors *n, unit, booL, int, real, string and List
all admit equality. :

Thus for example, the type {int * 'a ref)list admits equality, but
(int * 'a)list and (int -> bool)list do not.

A user—defined type constructor tycon, declared by a generative type binding
tb whose form is

{tyvar_seql tycon = data conl {of ty1} | ..| conn {of tyn}

admits equality within its scope (but, if declared by abstype, only within the
with part of its declaration]) iff it satisfies the fol lowing condition:

(3) Each construction type tyi in this binding is built from arbitrapy
reference types and type variables, either by type constructors which
already admit equality or (if tb is within a rec) by tycon or any other
type constructor declared by mutual recursion with tycon, provided these
other type constructors also satisfy the present condition.

The first paragraph of this section should be enough for an intuitive
understanding of the types which admit equality, but the precise definition is

given in a form which is readily incorporated in the type-checking mechanism.

18

v

8. Exceptions
8.1 Discussion

Some discussion of the exception mechanism is needed, as it goes a Little
beyond what exists in other functional Llanguages. It was proposed by AFan
Mycroft, as a means to gasin the convenience of dynamic exception trapping
without risking violation of the type discipline (and indeed still allowing
polymorphic exception-raising expressions). Brian Monahan put forwaprd a similar
jdea. Don Sannella also contributed, particularly to the nature of the derived
forms (Section B8.2); these forms give a pleasant way of treating standard
exceptions, as explained in Section 5.3.

The rough and ready rule for understanding how exceptions are handled is as
follows. If an exception is raised by a raise expression .

raise exn with exp

which lies in the textual scope of a declaration of the exception name exn, then
it may be handled by a handling rute

exn with match

in a handler, but only if this handler is in the textual scope of the same
declaration. Otherwise it may only be caught by the universal handling rute

? => exp' .

This rule is perfectly adequate for exceptions declared at top level; some
examples in Section B.4 below illustrate what may occur in other cases.

8.2 Derived forms

A handler discriminates among exception packets in two ways. First, it
handles just those packets (e,v) for which e is the exception bound to the
exception name in one of its handling rules; secona, the match in this rule may
discriminate upon v, the excepted value. Note however. that, if a universal
handling rule "? => exp'" is activeted, then all packets are handled without
discrimination. Thus "?" mey be considered as a wildcard, matching any packet.
It should be used with some care, bearing in mind that it will even hanale
interrupts.

A case which is likely to be frequent is when discrimination is required upon
the exception, but not upon the excepted value; in this case, the derived
handling rule :

exn => exp'

is appropriste for handling. Further, exceptions of type unit may be raised by
the shortened form

raise exn

since the only possible excepted value is ().

19

8.3 An_example
To illustrate the generality of exception handling, suppose that we have
declared some exceptions as follows:

exception oddlist :int list and oddstring :string

and that a certain expression exp:int may rsise either of these esxcaptions and
also runs the risk of dividing by zero. The handler in the following handle
expression would deal with these exceptions:

exp handle oddlist with [] =>0
I Ix] => 2%x
I xs:ys:_ => x-divy
Il oddstring with "" => 0

| s => sizels)-1
Il div => 410000

Note that the whole expression is well-typed because in each handling rule the
type of each match-pattern is the same as the exception type, snd because the
result type of each match is 1int , the same as the type of exp. The last
handling rule is the shortened form appropriate for exceptions of type unit .

Note also that the Last'handling rule will handle div exceptions raised by
exp , but will not handle the div exception which may be raised by "x div y"
within the first handling rule. Finally, note that a universal handling rute

Il ? => 50000

at the end would deal with all other exceptions raised by exp .

8.4 Some pathological examples

We now consider some possible misuses of exception hanaling, which may arise
from the fact that exception declarations have scope, and that each evaluation
of 8 generative exception binding creates a distinct exception. Consider @
simple example: :

excaption exn : bool;
yal flx) =
let exception exn:int in
if x > 100 then raise exn with x else x+1
end;
f(200) handle exn with true=>500 | “alse=>1000;

The program is well-typed, but useless. The exception bound to the outer exn is
distinct from that bound to the inner exn; thus the exception raised by f(200},
with excepted value 200, could only be handled by a handier within the scope of
the inner exception declaration — it will not be handled by the handler in the
program, which expects a boolean value. So this exception will be reported at
top level. This would apply even if the outer exception declaration were alsg
of type int; the two exceptions bound to exn would still be distinct.

On the other hand, if the Last Line of the program is changed to

f(200) handle ? => 500 ;

20

then the exception will be caught, and the value 500 returned. A universal
handling rule (i.e. containing "?") catches any exception packet, even one
exported from the scope of the declaration of the associated exception name, but
cannot examine the excepted value in the packet, since the type of this value
cannot be statically determined.

Even a single textual exception binding — if for example it is declared
within a recursively defined function — may bind distinct exceptions to the same
identifier. Consider another useless program:

val rec fix] =
let exception exn in
if p(x) then alx) else
if q(x) then f(b(x])) handle exn with c(x)
else raise exn with d(x)
end;
flv);

Now if plv) is false but qlv) is true, the recursive call will evaluate f(b(v)).
Then, if both p(bl(v)) and g(b(v)) are false, this evaluation will raise an exn
exception with excepted value d(b(v)). But this packet will not be handled,
since the exception of the packet is that which is bound to exn by the inner -
not outer — evaluation of the exception declaration.

These pathological examplés should not leave the impression that exceptions
are hard to use or to understand. The rough and ready rule of Section 8.1 will
almost always give the correct understanding.

21

2]

8. Type-checking

The type-checking discipline is exactly as in original ML, and therefore need
only be described with respect to new phrases.

In a match "pati=>exp1 | .. | patn=>expn", the types of all pati must be the
same (ty say), and if variable var occurs in pati then all free occurrences of
var in expi must have the same type as its occurrence in pati. In addition, the
types of all the expi must be the same (ty' say). Then ty->ty' is the type of
the match. The type of "fun match" is the type of the match. .

The type of a handler rule "exn with match" is ty', where exn has type ty and
match has type ty->ty'. The type of a universal handling rule "? => exp" is the
type of exp . The type of a handler is the type of all its handling rules
(which must therefore be the same), and the type of "exp handle handler" is that
of both exp and handler. The type of "raise exn with exp" is arbitrary, but exp
and exn must have the same type. The type of an exception may be polymorphic;
any exn is required to have the same type at all occurrences within the scope of
its declaration (and this must be an instance of any type qualifying the
declaration].

A type variable is only explicitly bound (in the sense of variable-binding in
lambda-calculus) by its occurrence in the tyvar_seq on the Left hand side of a
simple type binding "{tyvar_seq} tycon = ..", and then its scope is the right
hand side. (This means for example that bound uses of 'a in both tb1 and tb2 in
the type binding "tb1 and tb2" bear no relation to esch other.) Otherwise,
repeated occurrences of a (free) type variable may serve to Link explicit type
constraints. The scope of such & type varisble is the top-level declaration or
expression in which it occurs. 1In a type-constraint "exp:ty" or "pat:ty" the
type-checker must ascribe to exp or to pat . a type which is an instance of

ty ; if this instance is Less general than ty then the compiler should issue
a8 werning (but still compilel.

The first form of simple type binding "{tyvar_seql} tycon = data .." is
enerative, since a new unique type constructor (denoted by tycon) is created by

each textual occurrence of such a binding. The second form
"{tyvar_segq} tycon = ty", on the other hand, is non-generative; to take an
example, the type binding " 'a couple = 'a * 'a " merely allows the type

expression "ty couple" to abbreviate "ty * ty"- (for any ty) within its scope.
There is no semantic significance in abbreviation; in the Core Language it is
purely for brevity, though in the proposed extension of ML to contain Modules
non—generative type-bindings are likely to be essential in matching types or
Signatures. However, the type—checker should take some advantage of non—-local
type abbreviations in reporting types at top-level; in doing this, it may need
to choose sensibly between different possible abbreviations for the same type.

Some standard function symbols (e.g. =,+) stand for functions of more than
one type; in these cases the type-checker should complain if it cannot determine
from the context which is intended (an explicit type constraint may be needed).
Note that there is no implicit coercion in ML, in particular from int to real;
the conversion function real:int->real must be used explicitly.

The type—checker refers to the type environment (TE) component of the
enviromment, and records its findings there. Details of TE are not given in
this report; they are compatible with what is done in current ML
implementations, sxcept that value constructors (and their types) are associated
with the type constructors to which they belong.

a2

10. Syntactic restrictions

(1)

(2]

(3)

(4)

(5)

(6)

(7]

(8)

No pattern may contain two occurrences of the same variable. No binding
may bind the same identifier twice.

In a match "patl=>exp1 | ..l pstn=dexpn", the pattern sequence patl, ..,
patn should be irredundant and exhaustive. That is, each patj must mat?h
some value {of the right type)l which is nat matched by pati for any i<j,
and every value (of the right type) must be matched by some pati. The
compi ler must give warning on violation of this restriction, but should
still compile the match. Thus the "match" exception (see Section 3.4)
will only be raised for a match which has been flagged by the compiler.
The restriction is inherited by derived forms; in particulapr, this means
that in the Curried function binding "var apatl ..apatn {:ty} = exp"
(consisting of one clause only), each separete apati should be exhaustive
by itself.

For each value binding "pat = exp" the compiler must issue a report (but
still compile) if gither pat is not exhaustive or pat contains no
variable. This will (on both counts) detect a mistaken declaration Like
"val nil = exp" in which the user expscts to declare a new varisble nil
(whereas the Language dictates that nil is here a constant pattern, Sg no
variable gets declared). Cardelli points out this danger.

However, these warnings should not be given when the binding is a
component of a top-level declaration yal vb ; e.g. "yal x::lL = expl
and y = exp2" is not faulted by the compiler st top level, but may of
course generate a "bind" exception (see Section 3.8).

For each value binding "pat = exp" within rec, exp must be of the form
"fun match" ({The derived form of value binding given in Section 6.2
necessarily obeys this restriction). Each type binding "{tyvar_seq}
tycon = .." within rec must be generative (i.e. include "data").

In the Left hand side "{tyvar_seq)} tycon" of a simple type binding, the
tyvar_seq must contain no type variablLe more than once. The right hand
side of a simple type binding may contain only the type varijables
mentioned on the Left. :

In "let dec in exp end" and "local dec in dec' end" no type constructor
exported by dec may occur in the type of exp or in the type of any
variable, value constructor or exception name exported by dec'.

Every global exception binding — that is, not Localised either by let or
by local — must be explicitly constrained by a monotype.

If, within the scope of a type constructor tycon, a type binding tb

binds (simultaneously) one or more type constructors tycoml, .., tyconn
then: (a) if the identifiers tyconi are all distinct from tycon, then
their value constructors must also have identifiers distinct from those
of tycon; (b) if any tyconi is the same identifier as tycon, then any
value constructor of tycon may be re-bound as a value constructor for one
of tycom, .., tyconn, but is otherwise considered unbound (as a variable
or value constructor) within the scope of tb , unless it is bound again
therein. This constraint ensures that the scope of a type constructor is
identical with the scopes of its associated value constructors, except
that in an abstype declaration the scops of the value constructors is
restricted to the with part.

23

11. Conclusion

This design has been under discussion for over a year, and the designers are
confident in their understanding of it. However, it is only by extensive
practice that a language is properly evaluated; there are probably a few
infelicities of design from the practical point of view, and we expect these to
emerge during the next year or 80 in the course of experience with
implementation and use.

It would be reasonable after such a period to collect reactions and to
publish a List of corrections — just those which can be agresd among several
seriously concerned implementers and users.

Besides these corrections there will clearly be extensions - design ideas
which use the present language as a platform. It will be important to keep
these two developments separate as far as possible. Corrections should be few
and preferably done at most once; extensions may be many, but need not impair
the identity of the present lLanguage.

REFERENCES:

[1] M.Gordon, R.Milner and C.Wadsworth (1979} Edinburgh LCF. SpringerVertag,
Lecture Notes in Computer Science, Vol 78.

[2] R.Burstatl, D.MacQueen and D.Sannella (188U} HOPE: An Experimental

Applicative Language. Report CSR-62-80, Computer Science Dept, Edinburgh
University.

[3]JL.CardelLi (1882) ML under UNIX. Bell Laboratories, Murray HiLL, New
ersey.

[4] R.Milner (1983} A Proposal for Standard ML. Report CSR-157-83, Computer
Science Dept, Edinburgh University.

24

APPENDIX 1

SYNTAX : EXPRESSIONS and PATTERNS

(See Section 2.8 for conventions)

aexp ::=
{op} var (variable)
{op} con (constructor)
(exp1 , .., expn] (tuple, n>2)
[expt , .., expn] (List, n>0)
{ exp)
exp ::=
aexp (atomic)
exp aexp Llapplication)
exp id exp' (infixed application)
exp : ty L(constraint)
exp andalso exp' (conjunction)
exp orelse exp' (disjunction)
raise exn {with exp} (raise exception)
if exp then expl else exp2 (conditional)
while exp do exp' (iteration)
let dec in exp end (Local declaration)
case exp of match (case expression)
fun match (function)
exp handle handler R(handle exception)
exp ; exp' (sequence)
match ::= handler ::=
rulel | ..l rulen (n>1) hrutel Il ..ll hrulen (n>1)
rule ::= hrule ::=
pat => exp exn with match
exn => exp
? => exp
apat ::=
_ (wildcard)
{op} var (variable)
con (constant)
(pat1 , .., patn) (tuple, n>2)
[pat1 , .., patn] (list, n>0)
(pat)
pat ::=
apat {atomic)
{op} con apat L{construction)
pat con pat' (infixed construction)
pat : ty , L{constraint)
var {: ty} as pat (layered)

The syntax of types binds more tightly than that of expressions, so type
constraints should be parenthesised if not followed by a reserved word.

Each iterated construct (match, handler, ..) extends as far right as possible;
thus e.g. a match within a match may need to be parenthesised.

25

e
[4

APPENDIX 2

SYNTAX : TYPES, BINDINGS, DECLARATIONS and PROGRAMS

(See Section 2.8 for conventions)

tyvar

{ty_seql} tycon
tyl ¥ ..* tyn
tyl => ty2

pat = exp
{op} var apat11 ..apatin {:ty} = expl
..
| {op} var apatm? ..apatmn {:ty] = expn
vb1 and ..and vbn
rec vb

{tyvar_seql tycon = data constrs
{tyvar_seq} tycon = ty

- tb1 and ..and tbn
rec tb

constrs ::=
cont {of ty1} | ..] conn {of tyn}

eb ::=
exn {:ty} {= exn'}
eb1 and ..and ebn
dec ::=
yal vb
tvpe tb
abstype tb with dec end
exception eb
local dec in dec' end
exp
dir ‘
dec1 {;} ..deen {;}
dir ::=

infix{r} {pl} id1 ..idn
nonfix id1 ..idn

PROGRAMS: dec1 ; ..decn ;

% If var has infix status then gp is required in
*- var may be infixed in any clause. Thus at the

op var (apat,apat') may be written :

(type variable)

(type construction)

{tuple type, n>2)
R(function type)

(simple]
{clausal function) **

(m,n>1)
(multiple, n>2)
(recursive)

(simple, generative)
(simple, non-generative)
(multiple, n>2)
(recursive)

(n31)

(simple)
(multiple, n>2)

{value declaration)

(type declaration)
(abstract type declaration)
(exception declaration)

(Local declaration)
(top-Level only)

(di rective)

(dectaration sequence, n>0)

(declare infix status, p>0)
(cancel infix status)

this form; alternatively
start of any clause:

{(apat var apat')

and the parentheses may also be dropped if “éty" or "=" foliows immediately.

26

APPENDIX 3

PREDECLARED VARIABLES and CONSTRUCTORS

In the types of these bindings, num stands for either int or reat (the same in
each typel. Similarly ty stands for an arbitrary type, mty stands for any
monotype, and ety (see Section 7.2) stands for any type admitting equality.

nonfix infix
nil : 'a Llist Precedence 50:
map : (ta=>'b) -> 'a list / : real ¥ real -> resl
=> 'b List div : int * int -> int
rev : 'a list => 'a list mod : " " "
¥ :num * num -> num
true, false : bool :
not : bool -> bool Precedence 40:
+ 1" " n

-~

: num -> num - " " "

-~

abs num -=> num string * string ~> string
floor : real => int)

real : int -> real Precedence 30:

sqrt : real => resl t: 2 'a * 'a list -> 'a list
sin,cos,arctan : real —=> real @ :'a tList ¥ 'a List

exp, Ln : real -> real => 'a list
Precedence 20:

size : string -=> int = : ety ¥ ety -> bool
chr : int ~> string H> e " - " "
ord : string => int <. :num * num -> bool
explode : string -> string list > ¢+ " " "
implode : string List -=> string <= : M " "

>= e it " "
ref : mty —> mty ref
! : ‘aref -> 'a Precedence 10:

o : ('b->'c) * ('a->'b)
print : oty —=> ty => ('e->'c]
makestring : ty => string := : mty ref * mty -> unit

Special constants: as in Section 2.3.

Notes:
(1) The following are constructors, and thus may eppear in patterns:
nil true false ref HH .. and all special constants.
(2) Infixes of higher precedence bind tighter. "::" associates to the right;
otherwise infixes of equal precedence associate to the Left.

(3) The meanings of these predeclared bindings are discussed in Section 5.2.

a7

