July 19eY

c uage
Robin Milner

University of Edinburgh

Introduction

1.1 How this proposal evolved; 1.2 Design principles; 1.3 An example.

2. The bare language
2.1 Discussion; 2.2 Reserved words; 2.3 Special constants; 2.4 Identifiers;
2.5 Comments; 2.6 Lexical analysis; 2.7 Delimiters; 2.8 The bare syntax.
3. Ewaluation
3.1 Enviromments and values; 3.2 Enviromment manipulation;
3.3 Matching patterns; 3.4 Applying a match;
3.5 Evaluation of expressions; 3.6 Evaluation of value bindings;
3.7 Evaluation of type bindings; 3.8 Evaluation of exception bindings;
3.9 Evaluation of declarations; 3.10 Evaluation of programs.
4. Directives
5. Standard bindings
5.1 Standard type constructors; 5.2 Standard functions and constants;
5.3 Standard exceptions.
6. Standard derived forms
6.1 Expressions and patterns; 6.2 Bindings and declarations.
T. References and equality
7.1 References and assignment; 7.2 Equality.
8. Exceptions
8.1 Discussion; 8.2 Derived forms: 8.3 An example;
8.4 Some pathological examples.
9. Type-checking
10. Syntactie restrictions
11. Conclusion h
REFERENCES

APPENDICES: 1. Syntax: Expressions and Patterns

2. Syntax: Types,_Bindings, Declarations-and Programs
3. Predeclared Variables and Constructors

e

1. Introduction
1.1 How this proposal evolved

ML is a strongly typed functional programming language, which has been used
by a number of people for serious work during the last few years [1]. At the
Same time HOPE, designed by Rod Burstall and his group, has been Similarly used
[2]. The original DEC-10 ML was incomplete in some ways, redundant in others.
Some of these inadequacies were remedied by Cardelli in his VAX version; others
could be put right by importing ideas from HOPE. '

In April '83, prompted by Bernard Sufrin, I wrote a tentative proposal to
consolidate ML, and while doing so became convinced that this consolidation was
possible while still keeping its character. The main strengthening came from
generalising the "varstructs®™ of ML - the patterns of formal parameters - to the
patterns of HOPE, which are extendible by the declaration of new data types.
Many people immediately discussed the initial proposal. It was extremely lucky
that we managed to have several separate discussions, in large and small groups,
in the few succeeding months; we could not have chosen a better time to do the
job. Also, Luca Cardelli very generously offered to freeze his detailed drart
ML manual [3] until this proposal was worked out.

The proposal went through a second draft, on which there were further
discussions. The results of these discussions were of two kinds. First, it
became clear that two areas were still contentious: input/output and facilities
for separate compilation. Second, many points were brought up about the
remaining core of the language, and these were almost all questions of fine
detail. The conclusion was rather clear; it was obviously better to present at
first a definition of a Core language without the two contentious areas. This
course is further justified by the fact that the Core language appears to be
almost completely unaffected by the choice of input/output primitives and of
separate compilation constructs. Also, there are already strong and carefully
considered proposals, from Cardelli and MacQueen respectively, on how to design
these two vital facilities; together with the Core they will form a complete
language definition which can be adopted in its entirety, while still leaving
open the possibility of adopting only parts of it. But the strong hope is that
the whole will be very widely accepted.

A third draft [4] of the Core language was discussed in detail in a three-day
design meeting at Edinburgh in June '84, attended by nine of the people
mentioned below; some final points were ironed out, and the present Stanaard is
the outcome. The meeting also looked in detail at the MacQueen Modules proposal
and the Cardelli input/output proposal, and agreed on the essentials of these
facilities to be embodied soon in a working definition.

The main contributors to the proposed language, through their design work on

ML and on HOPE, are:

Rod Burstall, Luca Cardelli, Michael Gordon, David MacQueen,

Robin Milner, Lockwood Morris, Malecolm Newey, Christopher Wadsworth.
The final proposal also owes much to criticisms and suggestions from many other
people: Guy Cousineau, Jim Hook, Gerard Huet, Robert Milne, Kevin Mitchell,
Brian Monahan, Peter Mosses, Alan Myeroft, Larry Paulson, David Rydeheard, Don
Sannella, David Schmidt, John Scott, Stefan Sokolowski, Bernard Sufrin, Philip
Wadler. Most of them have expressed strong support for most of the design; any
inadequacies which remain are my fault, but I have tried to represent the
consensus,

1.2 Design principles

The proposed ML is not intended to be the functional language. There are too
many degrees of freedom for such a thing to exist: lazy or eager evaluation,
presence or absence of references and assignment, whether and how to hanale
exceptions, types-as-parameters or polymorphic type-checking, and so on. Nor is
the language or its implementation meant to be a commercial product. It aims to
be a means for propagating the craft of functional programming and a vehicle for
further research into the design of functional languages.

The over-riding design principle is to restrict the Core language to ideas
which are simple and well-understood, and also well-tried - either in previous
versions of ML or in other functional languages (the main other source being
HOPE, mainly for its argument-matching constructs). One effect of this
principle has been the omission of polymorphic references and assignment. There
is indeed an elegant and sound scheme for polymorphic assignment worked out by
Luis Damas; unfortunately it is not yet documented, and we will do better to
wait for a clear exposition either from Damas or - as promised - from David
MacQueen. In the proposed language much can be done to get the polymorphic
effect by passing assignment functions as parameters; it is worthwhile
experimenting with this method, and there is further advantage in keeping to the
simple polymorphic type-checking discipline which derives from Curry's
Combinatory Logic via Hindley.

A second design principle is to generalise well-tried ideas where the
generalisation is apparently natural. This has been applied in generalising ML
"varstructs® to HOPE patterns, in broadening the structure of declarations
"(following Cardelli's declaration connectives which go back to Robert Milne's
Ph.D. Thesis) and in allowing exceptions which carry values of arbitrary
polymorphic type. It should be pointed out here that a difficult decision had
to be made concerning HOPE's treatment of data types - present only in embryonic
form in the original ML - and the labelled records and variants which Cardelli
introduced in his VAX version. The latter have definite advantages which the
former lack; on the other hand, the HOPE treatment is well-rounded in its own
terms. Though a combination of these features is possible, it seemed (at least
to me, but some disagreed!) to entail too rich a language for the present
definition. Thus the HOPE treatment is fully adopted here. However, at the
design meeting of June '84 it was agreed to experiment with at least two
different ways of adding labelled records to the Core as a smooth extension, and
to adopt one of these schemes as standard in the near future.

A third principle is to specify the language completely, so that programs
will port between correct implementations with minimum fuss. This entails,
first, precise concrete syntax (abstract syntax is in some Senses more important
- but we do not all have structure editors yet, and humans still communicate
among themselves in concrete syntax!); second, it entails exact evaluation rules
(e.g. we must specify the order of evaluation of two expressions, one applied to
the other, just because of the exception mechanism). The present document is
not a full 1language definition; the Core language will only become a full
language when the proposals for input/output and for separate compilation are
added.

1.3 An example

The following declaration illustrates Some constructs of the Core language.
A longer expository paper should contain many more examples; here, we hope only
to draw attention to some of the less familiar ideas.

The example sets up the abstract type ‘'a dictionary , in which each entry
associates an item (of arbitrary type 'a) with a key (an integer). Besides the
null dictionary, the operations provided are for looking up a key, and for
adding a new entry which overrides any old entry with the same key. A natural
representation is by a 1list of key-item pairs, ordered by key.

abstype 'a dictionary =
data dict of (int # ta)list {dict is the abstraction}
{ constructor.}
with
yal nulldict = diet nil
{The function lookup may}

exXception lookup : unit { raise an exception.}

yal lookup (key:int) . {'a is the result type. }
(dict entrylist) :'a =

let val rec search nil = paise lookup {An auxiliary clausal }

| search ((k,item)::entries) = { function declaration.}

if key=k then item
else if key<k then raise lookup
else search entries

in search entrylist

end
Yal enter (newentry as (key,item)) {A layered pattern. }
(dict entrylist) :'a dictionary = ‘
let val rec update nil = [newentry] {A singleton list. }

| update ((entry as (k,_))::entries) =
if key=k then newentry: :entries
else if key<k then newentry::entry::entries
else entry::update entries
in dict(update entrylist)

end
end {end of dictionary}

After the declaration is evaluated, five identifier bindings are reported, and
recorded in the top-level enviromment. They consist of the type binding of
dictionary, the exception binding of lookup, and three ¥alue bindings with their
types:

nulldiet : 'a dictionary
lookup : int => ta dictionary -> ta
enter : int # 13 o> 13 dictionary -> t'a dictionary

The layered pattern construct "as" was first introduced in HOPE, and yields both
brevity and efficiency. The discerning reader may be able to find one further
use for it in the declaration.

Note: the abstype construet is in the Core language for completeness, but is
likely to be subsumed by Modules.

2. The bare language
2.1 Discussion

It is convenient to present the language first in a bare form, containing
enough on which to base the semantic description given in Section 3. Things
omitted from the bare language description are:

(1) Derived syntactic forms, whose meaning derives from their equivalent
forms in the bare language (Section 6);

(2) Directives for introducing infix identifier status (Section b);
(3) Standard bindings (Section 5);

(4) References and equality (Section T);

(5) Type-checking (Section 9).

The principal syntactic objects are expressions and declarations. The
composite expression forms are application, type constraint, tupling, raising
and handling exceptions, local declaration (using let) and function abstraction.

Another important syntactic class is the class of patterns; these are
essentially expressions containing only variables and value constructors, and
are used to create value bindings. Declarations may declare value variables
(using value bindings), types with associated constructors or operations (using
type bindings), and exceptions (using exception bindings). Apart from this, one
declaration may be 1local to another (using local), and a sequence of
declarations is allowed as a single declaration.

An ML program is a series of declarations, called top-level declarations,
dec1 ; .. deen ;

each terminated by a semicolon (where each deei is not itself of the form
"dec ; dec'™). 1In evaluating a program, the bindings created by decl are
reported before dec2 is evaluated, and so on. In the complete language, an
expression occurring in place of any deci is an abbreviated form (see Section
6.2) for a declaration binding the expression value to the variable "it"; such
expressions are called top-level expressions.

The bare syntax is in Section 2.8 below; first we consider lexical matters.

2.2 Reserved words

The following are the reserved words used in the Core language. They may not
(except =) be used as identifiers. 1In this document the alphabetic reserved
words are always underlined. :

abstype and andalso as case do data else
end exception fun handle if in infix
infixr let 1local nonfix of op orelse
raise rec them type val with while

C)Y o1, « 5 1= = _ 2

2.3 Speeial constants
The unique object of type unit is denoted by the special constant ().

An integer constant is any non-empty sequence of digits, possibly preceded by
a negation symbol (~).

A real constant is an integer constant, possibly followed by a point (.) and
one or more digits, possibly followed by an exponent symbol (E) and an integer
constant; at least one of the optional parts must occur, hence no integer
constant is a real constant. Examples: 0.7 , ~3.32E5 , 3E°7 . Non-examples:
23, .3, 4.B5 , 1E2.0 .

A string constant is a sequence of zero or more printable characters or
Spaces enclosed between quotes ("), but within which any quote symbol is
preceded by the escape character \ . Use of \ in strings also has meaning as
follows:

\N A single character interpreted by the system as end~of'-line
\T Tab
\"e The control character ¢, for any appropriate ¢
\ddd The single character with ASCII code ddd (3 decimal digits)
\e The character ¢, in all cases not covered above

2.4 Identifiers

Identifiers are used to stand for five different syntax classes which, if we
had a large enough character set, would be disjoint:

value variables (var)
value constructors (con)
type variables (tyvar)
type constructors (tycon)
exception identifiers (exid)

An identifier is either alphanumeric: any sequence of letters, digits, primes
(') and underbars (_) starting with a letter or prime, or symbolic: any sequence
of the following symbols

V%3 & 8+ -/ &+ <=2 > 72 8\~ ~ | »

In either case, however, reserved words are excluded. This means that for
example ? and | are not identifiers, but ?? and |=] are identifiers. The only
exception to this rule is that the symbol =, which is a reserved word, is also
allowed as an identifier to stand for the equality predicate (see Section 7.2).
The identifier = may not be rebound; this precludes any syntactic ambiguity.

A type variable (tyvar) may be any alphanumeric identifier Starting with a
prime. The other four classes (var, con, tycon, exid) are represented by
identifiers not starting with a prime. Thus type variables apre disjoint from
the other four classes. Otherwise, the syntax class of an occurrence of
identifier id is determined thus:

(1) In types, id is a type constructor, and must be within the scope of the
type binding which introduced it.

(2) Following eXception, raise or handle id is an exception identifier.
6

(3) Elsewhere, id is a value constructor if it occurs in the Scope of a type
binding which introduced it as such, otherwise it is a value variable.

It follows from (3) that no value binding can make a hole in the Scope of a
value constructor by introducing the same identifier as a variable, since this
identifier must stand for the constructor in any pattern which lies in the Scope
of the type declaration by which this constructor was introduced. 1In fact, by
means of a syntactic restriction (see Section 10(8)), we ensure that the Scopes
of a type constructor and of its associated value constructors are identical.

The syntax-classes var, con, tycon and exid all depend on which bindings are
in force, but only the classes var and con are necessarily disjoint. The
context determines (as described above) to which class each identifier
occurrence belongs.

In the Core language, an identifier may be given infix status by the infix or
infixr directive; this status only pertains to its use as a var or a con. If id
has infix status, then "exp1 id exp2" (resp. "patl id pat2") may occur wherevep
the application "id(exp1,exp2)" (resp. "id(pati,pat2)") would otherwise occur.
On the other hand, non-infixed occurrences of id must be prefixed by the keyword
"op". Infix status is cancelled by the nonfix directive.

2.5 Comments

A comment is any character Sequence within curly brackets {} in which curly
brackets are properly nested. Any ummatched } is faulted by the compiler.

2.6 Lexical analysis

Each item of lexical analysis is either a reserved word or a special constant
or an identifier; comments and non-visible characters separate items (except
Spaces within string constants) and are otherwise ignored. At each stage the
longest next item is taken.

As a consequence of this simple approach, spaces - opr Parentheses =~ are
needed sometimes to separate identifiers and reserved words. Two examples are

a:= !b or a:=(1b) but not a:=!b
(assigning contents of b to a)
“ :int->int or ("):int=>int but not “:int=->int

(unary minus qualified by its type)

Rules which allow omission of spaces in such examples, such as adopted by
Cardelli in VAX ML, also forbid certain symbol sequences as identifiers and -
more importantly - are hard to remember; it seems better to keep a simple scheme
and tolerate a few extra spaces or parentheses.

2.7 Delimiters

Not all constructs have a terminating reserved word; this would be verbose.
But a compromise has been adopted; end terminates any construct which declares
bindings with local scope. This involves only the Jet, local and agbstype
constructs.

2.8 The bare syntax

Conventions: {..} means optional.
For any syntax class s, define S_seq ::= s
(s1, ..,sn) (n21)
Alternatives are in order of decreasing precedence.
L (resp. R) means left (resp. right) association.
Parentheses may enclose phrases of any named syntax class.

EXPRESSIONS exp PATTERNS pat
aexp ::= apat ::= :
var (variable) - (wildecard)
con (constructor) var (variable)
(exp) con (constant)
(pat)
exp ::=
aexp (atomic) pat ::=
exp aexp L{application) apat (atomic)
exp : ty L(constraint) con apat L(construction)
expl , .., expn (tuple,n>2) pat : ty L(constraint)
raise exid with exp (raise exc,n) var{:ty} as pat (layered)
let dec in exp end (local dec'n) patl , .., patn (tuple,n>2)
exp handle handler (handle exc'ns)
fun match (function) YALUE BINDINGS vb
vb ::=
match ::= pat = exp (simple)
rulet | ..|! rulen (n21) vb1l and ..and vbn (multiple,nd2)
rec vb (recursive)
rule ::= :
pat => exp - IYPE BINDINGS tb
thb ::=
handler ::= {tyvar_seq} tycon
hrulel || ..|} hrulen (n>1) - = data constrs (simple)
{tyvar_seq} tycon
hrule ::= = ty (simple)
exid with matech tb1 and ..and tbn (multiple,nd>2)
? exp reec tb (recursive)
DECLARATIONS dec constrs ::=
dec ::= conl{of ty1} | ..! conn{of tyn}
yal vb (values)
Lype tb (types) EXCEPTION BINDINGS eb
abstype tb eb ::=
with dec end (abs. types) exid{:ty}{= exid'} (simple)
exception eb (exceptions) ebl and ..and ebn (multiple,n2)
local dec in dec' epnd (local dec'n) '
dec1 {;} ..deen {;} (sequence, n>0) IYPES ty
ty ::=
tyvar (type variable)
{ty_seq} tycon (type constr'n)
| PROGRAMS : dec1 ; ..deen ;] ty1 # .. % tyn (tuple type,n)2)
ty => ty! R(function type)

The syntax of types binds more tightly than that of expressions, so type
constraints should be parenthesized if not followed by a reserved word.

Each iterated construct (tuple, match, ..) extends as far right as possible;
thus e.g. a match within a match may need to be parenthesised.

8

3. Evaluation
3.1 Environments and Values

Evaluation of phrases takes place in the presence of an ENVIRONMENT and a
STORE. An ENVIRONMENT E has two components: a value environment VE associating
values to variables and to value constructors, and an exception enviroment EE
associating exceptions to exception identifiers. A STORE S associates values to
references, which are themselves values. (A third component of an environment, a
type environment TE, is ignored here since it is relevant only to type-checking
and compilation, not to evaluation.)

An exception e, associated to an exception identifier exid in any exception
enviromment, is an object drawn from an infinite set (the nature of e is
immaterial, but see Section 3.8). 4 Dacket p=(e,v) is an exception e paired
with a value v, called the excepted value. Neither exceptions nor packets are
values. Besides possibly changing S (by assignment), evaluation of a phrase
returns a presult as follows:

Phrase Result
Expression v or p
Value binding VE or p
Type binding VE
Exception binding EE
Declaration E or p

For every phrase except a handle expression, whenever its evaluation demands the
evaluation of an immediate subphrase which returns a Packet p as result, no
further evaluation of subphrases occurs and p is also the result of the phrase.
This rule should be remembered while reading the evaluation rules below:

A function value f is a partial function which, given a value, may return a
value or a packet; it may also change the store as a side-effect. Every other
value is either a constant (a nullary constructor), a construction (a
constructor with a value), a tuple or a reference.

3.2 Environment mapipulation

We may write <(id1,v1) ..(idn,vn)> for a value enviromment VE (the idi being
distinet). Then VE(idi) denotes vi, <> is the empty value environment, and
VE+VE' means the value enviromment in which the associations of VE! supersede
those of VE. Similarly for exception enviromments. If E=(VE,EE) and
E'=(VE',EE'), then E+E' means (VE+VE' ,EE+EE'), E+VE' means E+(VE',<>), ete.
This implies that an identifier may be associated both in VE and in EE without
conflict.

3.3 Matching patterns

The matching of a pattern pat to a value v either fails or yields a value
enviromnment. Failure is distinct from returning a packet, but a packet will be
returned when all patterns fail in applying a match to a value (see Section
3.4). In the following rules, if any component pattern fails to match then the
whole pattern fails to match.

The following is the effect of matching a pattern pat to a value v, in each
of the cases for pat:

the empty value enviromment <> is returned.

var the value enviromment <(var,v)> is returned.

con{pat} if v = con{v'} then pat is matched to v', else faiiure.

var{:ty} as pat : pat is matched to v returning VE; then <(var, v)>+VE
is returned.

patl, ..,patn : if v=(v1,...,vn) then pati is matched to vi returning
VEi, for each i; then VEl1+ ..+VEn is returned.

pat:ty pat is matched to v.

3.4 Applying a match

Assume enviromment E. Applying a match pati=dexp1] ..|patn=dexpn to value
v returns a value or packet as follows:

Each pati is matched to v in turn, from left to right, until one succeeds
returning VEi; then expi is evaluated in E+VEi. If none succeeds, then the
packet (emateh,()) is returned, where ematch is the standard exception bound by
predeclaration to the exception identifier "match". - But matches which may fail
are to be detected by the compiler and flagged with a warning; see Section
10(2).

Thus, for each E, a match denotes a function value.

3.5 Evaluation of expressions

Assume enviromment E=(VE,EE). Evaluating an expression exp returns a value
or packet as follows, in each of the cases for exp:

var ¢ the value VE(var) is returned.

con ¢ the value VE(con) is returned.

exp aexp : exp is evaluated, returning function value f; then
aexp is evaluated, returning value v; then f(v) is
returned.

expt, ..,expn : the expi are evaluated in sequence, from left to

right, returning vi respectively; then (v1, ..,vn)
is returned.

raise exid with exp ¢ exp is evaluated, returning value v; then packet
(e,v) is returned, where e = EE(exid).

exp handle handler : exp is evaluated; if exp returns a value v, then
v is returned; if it returns a packet p = (e,v)
then the handling rules of the handler are scanned

from left to right until a rule is found which
satisfies one of two conditions:

10

(1) it is of form "exid with match® and e=EE(exid),
in which case match is applied to v;

(2) it is of form "7 exp'", in which case exp! is
evaluated.

If no such hrule is found, then P is returned.

let dec in exp end ¢ dec is evaluated, returning E'; then exp is
evaluated in E+E'.

fun match : £ is returned, where f is the function of v gained
by applying match to v in enviromment E.

exp is evaluated.

exp:ty

3.6 Evaluation of value bindings

Assume enviromment E = (VE,EE). Evaluating a value binding vb returns a
value environment VE' or a packet as follows, by cases of vb:

pat = exp : exp is evaluated in E, returning value v; then pat is
matched to v; 1if this returns VE', then VE' is returned,
and if it fails then the packet (ebind,()) is returned, where
ebind is the standard exception bound by predeclaration to
the exception identifier "bind".

vb1 and ..and vbn : vbi1, .+,Vbn are evaluated in E from left to right, returnining
VE1, ..,VEn; then VE1+ ..+VEn is returned.

vb is evaluated in E', returning VE', where E!' = (VE+VE!,EE).
Because the values bound by evaluating vb must be function
values (Section 10(4)), E' is well defined by "tying knots"
(Landin).

rec vb

3.7 Evaluation of type bindings

The components VE and EE of the current enviromment do not affect the
evaluation of type bindings (TE affects their type checking and compilation).
Evaluating a type binding tb returns a value enviromment VE!' (it cannot return a
Packet) as follows, by cases of tb:

{tyvar_seq} tycon = data coni {of ty1} | ..! conn {of tyn} :
the value enviromment VE' = <(cont,v1), ..,(conn,vn)> is
returned, where vi is either the constant value coni (if
"of tyi" is absent) or else the function which maps v to

coni(v). Note that all other effect of this type binding is

handled by the compiler or type-chegger, not by evaluation.

e ——— T e s e, e N e e

{tyvar_seq} tycon

ty :
the value enviromment VE!' = VE is returned. This type
binding has no effect on evaluation; its purpose, in the
Core language, is merely to:provide an abbreviation for
a compound type.

tb1 and ..and tbn : tb1, ..,tbn are evaluated from left to right, returning
VE1, ..,VEn; then VE' = VE1+ ..+VEn is returned.

1

reec tb ¢ tb is evaluated. Note again that the recursion is
handled by type-checking only.

3.8 Evaluation of exception bindings

Assume enviromment E = (VE,EE). The evaluation of an exception binding eb
returns an exception enviromnment EE' as follows, by cases of eb:

exid {:ty}{= exid'} : EE' = <(exid,e)> is returned, where

(1) if exid' is present then e = EE(exid'); this is
a nop-generative exception binding since it merely
re-binds an existing exception;

(2) otherwise e is a previously unused exception (an
object from which the identifier exid is retrievable,
for reporting unhandled exceptions at top-level);
this is a generative exception binding.

eb1 and ..and ebn : ebl, ..,ebn are evaluated in E from left to right,
returning EE1, ..,EEn; then EE' = EEl1+..+EEn is returned.

3.9 Evaluation of declarations

Assume enviroment E = (VE,EE). Evaluating a declaration dec returns an
enviromment E' or a packet as follows, by cases of dec:

yal vb : vb is evaluated, retuhning VE'; then E!

(VE',<> 4is returned.

type tb ¢ tb is evaluated, returning VE'; then E'

abstype tb with dec end :
tb is evaluated, returning VE'; then dec is evaluated in E+VE!,
returning E'; then E' is returned.

(VE',<>) is returned.

exception eb : eb is evaluated, returning EE'; then E' = (<>,EE') is returned.

local decl in dec2 end :
dec1 is evaluated, returning E1, then dec2 is evaluated in E + E1,
returning E2; then E!' = E2 is returned.

dec1 {;} ..decn {;} :
each deci is evaluated in E+E1+ ..+E(i-1), returning Ei, for i =
1,2, ..,n; then E' = (<>,<>)+El+ ..+En is returned. Thus when
n=0 the empty enviromment is returned.

Each declaration is defined to return only the pew environment which it makes,
but the effect of a declaration sequence is to accumulate enviroments.

3.10 Evaluation of programs

The evaluation of a program "dect ; «.decn ;" takes place in the initial
presence of the standard top-level environment ENVO containing all the standard
bindings (see Section 5§). The top-level enviromment ENVi, present after the
evaluation of deei in the program, is defined recursively as follows: deci is
evaluated in ENV(i-1) returning enviromment Ei, and then ENVi = ENV(i-1)+Ei.

12

There is only one kind of directive in the standard language, namely t}
concerning the infix status of value variables and constructors. Othe
bPerhaps also concerned with Syntactic conventions, may be included in extensi
of the language. The directives concerning infix status are:

infix{r} {p} id1 ..idn
nonfix idt ..idn

where p is a non-negative integer. The infix and lnfixr directives introd
infix status for each idi (as a value variable or constructor), and the non
directive cancels it. The integer p (default 0) determines the Pprecedence, -

right if by infixr. Different infixed identifiers of equal precedence assoei:
to the left.

While id has infix status, each occurrence of it (as ga value varjiable

constructor) must be infixed or else preceded by QR; note that this inelug
such occurrences within patterns, even within the Patterns of a match.

3) with Precedence; these are all left associative except M";.n,

4 separate directive. However, the use of directives avoids problems
parsing.

The use of local directives » by let or local) imposes on the pParse
the burden of detemining their textual Scope. A quite superfiecial analysis i

enough for this Purpose, due to the use of end to delimit local scopes.

3

5. Standard bindines

ENVghe bindings of this Section constitute the Standard top-level envirormment

5.1 §Lggganﬂ.hxgg_ggggizggtgng

The bare language provides the function-type constructor, =>, and for each n
22 a tuple-type constructor #n, Type constructors are in general postfixed in
ML, but -> is infixed, and the n-ary tuple-type constructed from tyl, .., tyn is
WEitgend"tVT ¥ % typn, Besides these type constructors, the following are
standard:

Type constants (nullary constructors) unit,bool, int, real, string
Unary type constructors : list, ref

The constructors unit, bool and list are fully defined by the following assumed
declaration

infixr 30 ::
Lype unit = data () and bool = data true ! false
and rec 'a list = data nil | op :: of 'a *# '3 1ist

The word "™unit" is chosen since the type contains Jjust one value; this is why it
is preferred to the word "void" of ALGOL 68. Note that it is also (up to
isomorphism) a unit fopr type tupling, though we do not exploit this isomorphism
by allowing a coercion between the types ty and ty #® unit .

The type constants int, real and string are equipped with Special cdnstants
as described in Section 2.3. The type constructor ref is for constructing
reference types; see Section Ts

5.2 §Landang_rungiigng_and_ggnatanna

All standard functions and constants are listed in Appendix 3. There is not
a lavish number; we envisage function libraries provided by each implementation,
together with the equivalent ML declaration of each function (though the
implementation may be more efficient). 1In time, some suech library functions may
accrue to the standard; a likely candidate for this is a group of array-handling
functions, grouped in a standard declaration of the unary type constpructor
"array"n,

Most of the standard functions and constants are familiar, so we need mention
only a few critical points:

(1) explode yields a 1list of strings of size 1; implode is iterated String
concatenation (7). ord yields the Ascii code number of the first
character of a string; chr yields the Asecii character (as a string of
size 1) corresponding to an integer.

(2) ref is a monomorphic function, but in patterns it may be used
polymorphically, with type 'a ->'a ref .

it

(3) The character functions ord and chr, the arithmetiec operators %, /, div,
mod, + and - , and the standard functions floor, sqrt, exp and ln may
raise standard exceptions (see Section 5.3) whose identifier in each case
is the same as that of the function. This occurs for ord when the string
is empty; for chr when the character is undefined; and for the others
when the result is undefined or out of range.

(4) The value r=amod d satisfies 0<r<d, and the value
qQ=2adivd satisfies d*q + r = a . The result of arctan lies
between +pi/2, and 1n (the inverse of exp) is the natural logarithm.
The value floor(x) is the largest integer < x; thus rounding may be done
by floor(x+0.5) .

(5) Two multi-typed functions are included as quick debugging aids. The
funetion print tty->ty is an identity function, which as a side-effect
prints its argument exactly as it would be printed at top-level. The
printing caused by "print(exp)" will depend upon the type asecribed to
this papticular occurrence of exp ; thus print is not a normal
polymorphic function. The function makestring :ty->string is similar,
but instead of printing it returns as a string what print would produce
on the screen. -

5.3 Standard exceptions

All predeclared exception identifiers are of type unit. There are three
special ones: match, bind and break; these exceptions are raised on failure of
matching or binding as explained in Sections 3.4 and 3.6, and on depressing the
BREAK key. Note, however, that match and bind exceptions cannot occur unless
the compiler has given a warning, as detailed in Section 10(2),(3), except in
the case of a top-level declaration as indicated in 10(3).

The only other predeclared exception identifiers are
ord chr * / div mod + - floor sqrt exp 1n
These are the identifiers of standard functions which are ill-defined or out of
range for certain arguments, as detailed in Section 5.2, For example, using the
derived handle form explained in Section 8.2, the expression
3 div x handle div => 10000

will return 10000 when x = 0.

15

6. Standard Derived Forms

6.1 Expre s d

DERIVED FORM EQUIVALENT FORM

EKHE§§§iQH§ :
raise exid raise exid with ()
gase exp of match (fun match) exp

if exp then exp1 else exp2 case exp of true=dexp1 ! false=>exp2

eXp orelse exp' Af exp then true else exp!
exXp andalso exp! if exp then exp' else false
exp ; exp' case exp of () => exp!
while exp do exp!' let val rec f = fup () =>
if exp then (exp'; f£()) else ()
in f() end
[exp1, .., expn] expl:: ..::expn::nil (n20)

Handling rules :

exid => exp exid with (_) => exp
Patterns :
[patl , .., patn] patl:: ..::patn::ni1l (n>0)

The derived form may be Iimplemented more efficiently than its equivalent
form, but must be precisely equivalent to it Semantically. The type~checking of
each derived form is also defined by that of its equivalent form.

The binding power of all bare and derived forms is shown in Appendix 1. A
semicolon, whether used in declaration Sequencing or in expression Sequencing,
always has weakest binding power; also a Semicolon always terminates a
declaration where this is syntactically possible (thus expression sequencing may
need to be parenthesised).

The shortened raise form is only admissible with exceptions of type unit.
The shortened form of handling rule is appropriate whenever the excepted value
is immaterial, and is therefore (in the full form) matched to the wildeard

pattern.

\6

6.2 Bindings and Declarations

DERIVED FORM EQUIVALENT FORM

Yalue bindings :

var apatll ..apatin {:ty} exp1 var = fup x1 => ..fun xn =>

| .. case (x1, .., xn)
| var apatm1 ..apatmn {:ty} = expm of apatit, .., apatin => expi {:ty}

1]

| apatm1, .., apatmn => expm {:ty}

{ where the xi are new, and m,n>1 }

exp yal it = exp

The derived value binding allows function definitions, possibly Curried, with
several clauses. The derived declaration is only allowed at top~-level, for
treating top~level expressions as degenerate declarations; "it"™ is just a normal
value variable.

17

T. References and equajity
7.1 Bifﬂmcﬁs_azxd_is_sigmg_n;

Following Cardelli, references apre Provided by the type constructor "pef™.
Since we are sticking to monomorphic references, there are two overloaded
functions available at all monotypes mty:

(1) ref : mty -> mty ref, which associates (in the store) a neyw reference
with its argument value. M"pef" i3 2 constructor, and may be used
polymorphieally in patterns, with type 'a <> '3 per .

(2) @b := : mty rer # mty -> unit , which associates its fipst (ret'erence)
argument with its second (value) argument in the store, and returns () as
result,

The polymorphic contents function myn ig provided, and is equivalent to the
declaration "yal !(ref X) = x",

7.2 Equality

The overloaded equality function 20 = : ety * ety -> bool is available at
all type ety which admit equality, according to the definition below. The
effect of this definition is that equality will only be applied to values which
are built up from references (to arbitrary values) by value constructors,
ineluding of course constant values. On references, equality means identity; on
objects of other types ety, it is def'ined recursively in the natural way.

The types ety which admit equality are therefore defined as follows:

(1) A type ty admits equality iff it is built from arbitrary reference types
by type constructors which admit equality.

(2) The standard type constructors *n, unit, bool, int, real, string and list
all admit equality.

Thus for example, the type (int # '3 pef)list admits equality, but
(int * 'a)list and (int -> bool)list do not.

A user-defined type constructor tycon, declared by a type binding tb whose
bare form is

{tyvar_seq} tycon = con {of ty1} | ..! conn {of tyn} dale

admits equality within its scope (but, if declared by abstype, on%y within the
with part of its declaration) iff it satisfies the following condition:

(3) Each construction type tyi in this binding is built from arbitrary
reference types and type variables, either by type constructors which
already admit equality or (if tb is within a pec) by tycon or any other
type constructor declared by mutual recursion with tycon, provided these
other type constructors also satisfy the present condition.

The first paragraph of this section should be enough for an intuitive

understantiing of the types which admit equality, but the precise def‘init_:js..on is
iven in a form which is readily incorporated in the type-checking mechanism.
&

> -
' e i Al A AL
Lot ed by menganeratueyg
) 1 1 ¥ (
{ {
\

ARV y
"\’ ! /

8. Exceptions

8.1 Discussion
Some discussion of the exception mechanism is Needed, as it goes a little
beyond what exists in other functional languages. It was proposed by Alan

Mycroft, as a means to gain the convenience of dynamic exception trapping
without risking violation of the type discipline (and indeed still allowing
polymorphic exception-raising expressions). Brian Monahan Put forward a sipjlap
idea. Don Sannella also contributed, particularly to the nature of the derived
forms (Section 8.2); these forms give a pleasant way of treating standapd
exceptions, as explained in Section 5.3,

The rough and ready rule for understanding how exceptions are handled is as
follows. If an exception is raised by a raise expression

raise exid with exp

which lies in the textual scope of a declaration of the exception identifiep
exid, then it may be handled by a handling rule

exid with match

in a handler, but only if this handler is in the textual scope of the same
declaration. Otherwise it may only be caught by the universal handling rule

? exp!

This rule is perfectly adequate for exceptions declared at top level; some
examples in Section 8.4 below illustrate what may occur in other cases.

8.2 Derived forms

A handler discriminates among exception packets in two ways. First, it
handles just those packets (e,v) for which e is the exception bound to the
exception identifier in one of its handling rules; Second, the match in this
rule may discriminate upon v, the excepted value. Note however that, if a
universal handling prule "? exp'" is activated, then all packets are handled
without discrimination.

A case which is likely to be frequent is when discrimination is required upon
the exception, but not upon the excepted value; in this case, the derived
handling rule

exid => exp'

is appropriate for handling. Further, exceptions of type unit may be raised by
the shortened form

raise exid

since the only possible excepted value is ().

19

8.3 An_example

To illustrate the generality of exception handling, suppose that we hayg
declared some exceptions as follows:

exception oddlist :int 1ist and oddstring :string

and that a certain expression exp:int may raise either of these exceptions and

also runs the risk of dividing by zero. The hanaler in the following hapndle
expression would deal with these exceptions:

exp handle oddlist with [] => 0
I [x] => 2y
! xe: =>xd
|| oddstring with "n
| s

Il div => 10000

nn«<

>0
> size(s)~1

Note that the whole expression is well-typed because in each hanaling rule the
type of each match-pattern is the same as the exception type, and because the
result type of each match is int s the same as the type of exp. The last
handling rule is the shortened form appropriate for exceptions of type unit .

Note also that the last handling rule will handle div exceptions raised by
exp , but will not handle the div exception which may be raised by "x div A
within the first handling rule. Finally, note that a universal handling rule

It ? 50000

at the end would deal with all other exceptions raised by exp .

8.4 Some pathological examples

We now consider some possible misuses of exception hanaling, which may arise
from the fact that exception declarations have scope, and that each evaluation
of a generative exception binding creates a distinct exception. Consider a
simple example:

exception exid : bool;
yal f(x) =
let exception exid:int inp
Af x > 100 then raise exid with x else x+1
end;

£(200) handle exid with true=>500 | false=>1000;

The program is well-typed, but useless. The exception bound to the outer exid
is distinet from that bound to the inner exid; thus the exception raised by
£(200), with excepted value 200, could only be handled by a handler within the
scope of the inner exception declaration - it will not be handled by the. handler
in the program, which expects a boolean value. So this exception will Jjust
explode at top level. This would apply even if the outer exception declaration
were also of type int; the two exceptions bound to exid would still be distinect.

On the other hand, if the last line of the program is changed to

£(200) handle ? 500 ;

20

then the eéXception will be caught, and the value 500 returned. A universal
handling rule (i.e. containing "?") aatohes any exception packet, even one
exported from the Scope of the declaration of the associated exception
identifier, but cannot examine the excepted value in the packet, since the type
of this value cannot be statically determined.

Even a single textual exception binding - if for example it is declared
within a recursively defined function - may bind distinet exceptions to the same
identifier. Consider another useless pProgram:

¥al rec f(x) =
det exception exid ip
if p(x) then a(x) else
if q(x) then f(b(x)) handle exid with o(x)
else raise exid with d(x)

f(v);

Now if p(v) is false but a(v) is true, the recursiye call will evaluate £(b(v)).
Then, if both p(b(v)) and qa(b(v)) are false, this evaluation will raise an exid
exception with excepted value d(b(v)). But this Packet will not be hanaled,
Since the exception of the packet is that which is bound to exid by the innepr -
not outer - evaluation of the exception declaration.

These pathological examples should not leave the impression that exceptions

are hard to use or to understand. The rough and ready rule of Section 8.1 wil1l
almost always give the correct understanding.

PA

9. Iype-checking

The type-checking discipline is exactly as in original ML, and therefore need
only be described with respect to new phrases.

In a mateh "pati=dexp1 | .. | patn=>expn", the types of all pati must be the
same (ty say), and if variable var occurs in pati then all free occurrences of
var in expi must have the same type as its occurrence in pati. In addition, the
types of all the expi must be the same (ty' say). Then ty->ty' is the type of
the match. The type of "fup match™ is the type of the match.

The type of a handler rule "exid with mateh™ is ty', where exid has type ty
and match has type ty->ty'. The type of a universal handling rule "? exp" 1is
the type of exp . The type of a handler is the type of all its handling rules
(which must therefore be the same), and the type of "exp handle handler" is that
of both exp and handler. The type of "raise exid with exp" is arbitrary, but
exp and exid must have the same type. The type of an exception may be
polymorphic; any exid is required to have the same type at all occurrences
within the scope of its declaration (and this must be an instance of any type
qualifying the declaration).

A type variable is only expliecitly bound (in the sense of variable-binding in
lambda-calculus) by its occurrence in the tyvar_seq on the left hand side of a
simple type binding "{tyvar_seq} tycon = ..", and then its Scope is the right
hand side. (This means for example that bound uses of 'a in both tb1 and tb2 in
the type binding "tb1 apd tb2" bear no relation to each other.) Otherwise,
repeated occurrences of a (free) type variable may serve to link explicit type
constraints. The scope of such a type variable is the top-level declaration or
expression in which it occurs. '

The first form of simple type binding "{tyvar_seq} tycon = data .." is
generative, since a new unique type constructor (denoted by tycon) is created by
each textual occurrence of such a binding. The second form
"{tyvar_seq} tycon = ty", on the other hand, is non-generative; to take an
example, the type binding " 'a couple = 'a #* 1 " merely allows the type
expression "ty couple”™ to abbreviate "ty * ty" (for any ty) within its scope.
There is no semantic significance in abbreviation; in the Core language it is
purely for brevity, though in the proposed extension of ML to contain Modules
non-generative type-bindings are likely to be essential in matching types or
Signatures. However, the type-checker should take some advantage of non-local
type abbreviations in reporting types at top-level; in doing this, it may need
to choose sensibly between different possible abbreviations for the same type.

Some standard function symbols (e.g. =,+) stand for functions of more than
one type; in these cases the type-checker should complain if it cannot determine
from the context which is intended (an explicit type constraint may be needed).
Note that there is no implicit coerecion in ML, in particular from int to real;
the conversion function real:int->real must be used in cases Wwhere coercion is
needed.

The type-checker refers to the type enviromment (TE) component of the
environment, and records its findings there. Details of TE are not given in
this report; they are compatible with what is done in current M.,
implementations, except that value constructors (and their types) are associated
with the type constructors to which they belong.

22

10. Syntactic restrictions

(1) No pattern may contain two occurrences of the same variable.

(2) In a match "pati=dexpi | ..]| patn=>expn”, the pattern sequence pati, ..,

(3)

()

(5)

(6)

("

(8)

patn should be irredundant and gexhaustive. That is, each patj must match
some value (of the right type) which is not matched by pati for any i<J,

and every value (of the right type) must be matched by some pati. The
compiler must give warning on violation of this restriction, but should
8till compile the match. Thus the "match" exception (see Section 3.4)
will only be raised for a match which has been flagged by the compiler.
The restriction is inherited by derived forms; in particular, this means
that in the Curried function binding "var apati ..apatn {:ty} = exp"
(consisting of one clause only), each separate apati should be exhaustive
by itself.

For each value binding "pat = exp" the compiler must issue a report (but
still compile) if either pat is not exhaustive or pat contains no
variable. This will (on both counts) detect a mistaken declaration like
"val nil = exp" in which the user expects to declare a new variable nil
(whereas the language dictates that nil is here a constant pattern, so no
variable gets declared). Cardelli points out this danger.

However, these warnings should not be given when the binding is a
component of a top-level declaration yal vb ;7 e.g. "yal x::1 = expl
and v = exp2" is not faulted by the compiler at top level, but may of
course generate a "bind" exception (see Section 3.6).

For each value binding "pat = exp" within pree, exp must be of the form
"fun match". (The derived form of value binding given in Section 6.2
necessarily obeys this restriction.)

In the left hand side "{tyvar_seq} tycon" of a simple type binding, the
tyvar_seq must contain no type variable more than once. The right hand
side of a simple type binding may contain only the type variables
mentioned on the left.

In "let dec in exp end" and "local dec ip dee! end" no type constructor
exported by dec may occur in the type of exp or in the type of any
variable or value constructor exported by dec'. A non-generative type
binding (i.e. an abbreviation) may not be qualified by rec.

Every global exception binding - that is, not localised either by let or
by local - must be explicitly constrained by a monotype.

If a type constructor tycon' is declared within the scope of a type
constructor tycon, then (a) if tycon and tycon' are distinet identifiers,
then their value constructors must be disjoint; (b) if tycon and tycon!’
are the gsame identifier, then the value constructors of the outer
declaration are not accessible in the scope of the inner declaration,
whether or not the inner and outer declarations employ the same
identifier(s) as a value constructor(s). These constraints ensure that
the scope of a type constructor is identical with the scopes of its
associated value constructors.

23

11. Coneclusion

This design has been under discussion for over a year, and the designers are
confident in their understanding of it. However, it is only by extensive
practice that a language is properly evaluated; there are probably a few
infelicities of design from the practical point of view, and we expect these to
emerge during the next year or so in the ocourse of experience with
implementation and use.

It would be reasonable after such a period to colleet reactions and to
publish a 1list of corrections - just those which can be agreed among several
seriously concerned implementers and users.

Besides these corrections there will clearly be extensions - design ideas
which use the present language as a platform. It will be important to keep
these two developments separate as far as possible. Corrections should be few
and preferably done at most once; extensions may be many, but need not impair
the identity of the present language.

REFERENCES:

[1] M.Gordon, R.Milner and C.Wadsworth (1979) Edinburgh LCF. Springer-Veriag,
Lecture Notes in Computer Science, Vol 78.

(2] R.Burstall, D.MacQueen and D.Sannella (1980) HOPE: An Experimental
Applicative Language. Report CSR-62-80, Computer Science Dept, Edinburgh
University.

[3] L.Cardelli (1982) ML under UNIX. Bell Laboratories, Murray Hill, New
Jersey.

[4] R.Milner (1983) A Proposal for Standard ML. Report CSR-157-83, Computer
Science Dept, Edinburgh University.

24

APPENDIX 1

(See Section 2.8 for conventions)

ae ts=
{op} var
{op} con
[expt , .., expn]
(exp)

exp ::=
aexp
exp aexp
exp : ty
exp id exp!
exp andalso exp'’
exp gorelse exp'
expl , .., expn
raise exid {with exp}
if exp then exp1 else exp2
while exp do exp'
let dec in exp end
gase exp of match
exp handle handler
fun match
exp ; exp'

mateh ::=

rulel | ..} rulen (n21)
rule ::=

pat => exp

apat ::=

{op} var

con

[patt , .., patn]
(pat)

pat ::=
apat
{op} con apat
pat : ty
pat con pat!
var {: ty} as pat
pat! , .., patn

(variable)
(constructor)
(1ist, n>0)

(atomic)
L(application)
L(constraint)

(infixed application)

(conjunction)

(disjunction)

(tuple, n>2)

(raise exception)

(conditional)

(iteration)

(local declaration)

(case expression)

(handle exception)

(function)

(sequence)

handler ::=
hrule!l {! ..}! hrulen

hrule ::=
exid with match
exid => exp
? exp

(wildeard)
(variable)
(constant)
(1ist, n>0)

(atomie)
L(construction)
L(constraint)

(infixed construction)

(layered)

(tuple, n>2)

(n21)

The syntax of types binds more tightly than that of expressions, so type
constraints should be parenthesised if not followed by a reserved word.

Each iterated construct (tuple, match, ..) extends as far right as possible;
thus e.g. a match within a match may need to be parenthesised.

25

APPENDIX 2

(type variable)

(type construction)

(tuple type, n>2)
R(function type)

(simple)
(clausal function) ##

(m,n>1)

(multiple, nd>2)
(recursive)

(simple)

: C
(See Section 2.8 for conventions)

ty ::=

tyvar

{ty_seq} tycon

tyl1 & ,.% tyn

tyl => ty2
vb ::=

pat = exp

{op} var apat!1 ..apatin {:ty} = exp?

| {op} var apatml ..apatmn {:ty} = expn

vb1 and ..and vbn

rec vb
th ::= .

{tyvar_seq} tycon = data constrs

{tyvar_seq} tycon = ty

tb1 and ..and tbn
rec tb

constrs ::=
conl {of ty1} | ..}! conn {gﬁ tyn}

eb ::=
exid {:ty} {= exid'}
eb1 and ..and ebn

dec ::=
yal vb
Lype tb
abstype tb with dec end
exception eb
local dec in dec!' end
exp
dir
dect {;} ..deen {;}

dir ::=

infixir? {p} id1 ..idn
nonfix id1 ..idn

PROGRAMS: dec1 ; ..deen ;

(simple)
(multiple, n>2)
(recursive)

(n21)

(simple)
(multiple, n)2)

(value declaration)

(type declaration)
(abstract type declaration)
(exception declaration)
(local declaration)
(top-level only)
(directive)

(declaration sequence, n>0)

(declare infix status, p>0)
(cancel infix status)

#% If var has infix status then op is required in this form; alternatively
var may be infixed in any clause. Thus at the start of any clause:

op var (apat,apat!) may be written :

(apat var apat!)

where the parentheses may also be dropped if "=" follows immediately.

26

ti&‘.‘

APPENDIX 3
DEC D c c
nonfix infix
nil : 'a list Precedence 5Q:
map : (ta=>'b) => 'a list / ¢ real * real -)> real
=> 'b list div : int #* int -> int
rev : 'a list => 'a list mod : " " "
* :nm *am ->num
true,false : bool
not : bool => bool Precedence 40:
+* H n " "
- P num -> num - 3 W n n
abs : num > num ® : string * string -> string
floor : real -=> int
real : int «> real Precedence 30:
sqrt ¢ real -> real t:: 'a® '3 list > 'a list
sin, cos,arctan : real -> real @ : 'alist * '3 list
exp,1ln ¢ real => real => 'a list
Brecedence 20:
size : string ~> int = : ety ® ety -> bool
chr : int => string <> 00 " "
ord ¢ string -> int < :nm #* num ->bool
explode ¢ string -> string list > ¢+ 0 " n
implode : string list -> string = N " "
>= H n " n
ref ¢ mty => mty ref
! t 'aref => 'a Precedence 10:
o : ('b=>'c) * (ta=>'d)
print : bty => ty => (ta=>'e)
makestring : ty -> string := : mty ref ¥ mty -> unit

Special constants: as in Section 2.3.

Notes:
(1) The following are constructors, and thus may appear in patterns:
nil true false ref HH .. and all special constants.
(2) num stands for either int or real (the same in each type). Similarly,
ty stands for an arbitrary type, mty stands for any monotype, and ety

(as explained in Section T7.2) stands for any type admitting equality.

(3) Infixes of higher precedence bind tighter. M™::" associates to the right;
otherwise infixes of equal precedence associate to the left.

(4) The meanings of these predeclared bindings are discussed in Section 5.2.

27

1

