Toward a standard Standard ML

We would like to begin seriously and systematically working on the problem of incom-
patible environments and libraries that is threatening to cause us all continuing grief and
to retard the future development of Standard ML.

History

Unfortunately, the consideration of what should be in the "initial static and dynamic basis”
(i.e. pervasive environment) occurred at the tail end of the Standard ML design discussions.
Bob Harper did a fairly careful job on a proposal for basic I/O facilities. But, perhaps
because we were tired or out of time, the rest of the initial basis was chosen on a rather
casual basis. For instance, I have no recollection of any discussion leading to a rational
decision that "map” belonged in the initial basis but ”app” or ”fold” did not. Types and
functions that were available and commonly used in the Edinburgh compiler were left out.
Even in the minimal set of functions provided there were naive mistakes such as the choice
of exceptions for the arithmetic operators and designation of append (@) as left-associative.

It was clear to me that any realistic implementation would have to provide more than
this minimal basis, and in retrospect it would have been a good idea to devote another
year to working on the design of the basic environment. However, this did not happen;
the Definition was published with this initial basis and it became very hard make any
corrections.

Any serious implementation of Standard ML must go beyond the specified initial basis,
and since there is no guidance on how this should be done and little coordination, the basis
has been extended incompatibly by the three major implementations (Poly /ML, SML of NJ,
and POPLOG ML). The result is the current mess, manifested recently by the argument
about the type and semantics of substring. It is our task to do what can be done to reduce
the confusion and resulting porting difficulties.

Issues

There are at least three related problems:

1. What environment should be used for writing portable code, and how should that
environment be made available?

2. What should be bound in the default top-level environment (what we call the "per-
vasive” environment)?

3. What library modules should be available in all implementations?



The basic goal is to be able to configure each implementation so that it presents a standard
environment for compiling source code conforming to certain simple guidelines.

We want to achieve this without fragmenting and unnecessarily complicating the en-
vironments. For instance, we want to avoid having to look for basic string functions in
several different places, e.g. the pervasive environment, a basis structure, and one or more
string library modules. We also want to avoid having to sacrifice efficiency for the sake of
portability.

Andrew has made a proposal to define a ”Standard” structure (”"Base” or "Basis” might
be a better name). This structure would contain (at least) critical primitives needed to
define efficient library modules in an ”implementation independent” way. Components
would only be added to the Standard module if there was a consensus on their name,
type, and semantics. If an adequate Standard structure could be established, it should
be possible to implement a library such as the Edinburgh Library solely in terms of that
structure, allowing it to compile on all SML systems without change. This would eliminate
the need for implementation-specific versions of the library source code.

One thing that must be decided is the precise role of the Standard module. Should it
be restricted to only isolated operations, such as substring, that require compiler support to
be implemented or implemented efficiently? Or should it be as a minimum portability base
supplied by each compiler, something of a alternative to the pervasives? A closely related
question is: what should be the relation between the Standard structure and the pervasive
environment? There are at least three possibilities:

e The pervasive environment can be defined in terms of the Standard structure. This
might mean that the elements of the pervasive environment are all contained in the
Standard structure (or its substructures), or they may just be definable (in ML) in
terms of the Standard structure.

e The Standard structure and the pervasive environment are complementary and have
no elements in common.

e The Standard structure and the pervasive environment overlap, containing elements
in common without either being definable in terms of the other.

It may be possible to give a ”reference implementation” of large parts of the Standard
structure in terms of the Definition’s initial basis, but this implementation would not be
acceptably efficient (e.g. the definition of substring in terms of explode).

One thing the Standard structure cannot provide is overloaded identifiers. Nor can it
provide infix operators (assuming that Standard has a signature and infix specifications are
remain excluded from signatures). So providing for overloadings and infixes is the minimum
necessary role of the pervasive environment.

Another and more controversial issue is the relation between the pervasive environment
and the initial basis described in Appendices C and D of the Definition. We could choose
to minimize the pervasive environment, making it a subset of the Definition’s initial basis
by moving nonoverloaded, noninfix value bindings into structures. We could make the
pervasive environment be a superset of the initial basis, adding at least the Standard
structure binding. Or we might insist that the pervasive environment be identical with



the Definition’s initial basis. In the later case, some special mechanism would have to be
provided to get access to necessary extensions.

Among the libraries based on Standard would be ones providing most of the current
implementation-dependent extended environments (e.g. NJ, Poly, POPLOG). These would
support existing application code, and would also make it possible for each compiler to mimic
the others to some extent. Of course, it is likely that the different compilers will continue
to provide unique and nonportable libraries (e.g. signals, continuations, and concurrency
in SML of NJ), but implementations should insure that these do not get in the way when
one wants to write portable applications or libraries. Future versions of SML of NJ will
provide new facilities that will give programmers more explicit control of the compilation
environment for this purpose.

We will also have to address certain technological issues about how environments are
managed and how sophisticated the loading facilites are. For instance, large library modules
are more acceptable if a loader can selectively load only the functions needed.

Strategy

There are various ways we might approach the problem, but I suggest that the most efficient
method is to start with a concrete, if incomplete, proposal for the Standard structure and
try to come to agreement one component at a time. In order to insure reasonable progress
we might agree on a time table for the negotiations. For instance, it would be useful to
have an adequate Standard structure specified by the time of next June’s ML workshop in
San Fransisco.

As a basis for discussion, we have the current extended environments provided by SML
of NJ, Poly/ML, and POPLOG ML, as well as the Edinburgh library. Unfortunately, we
do not have access to the Poly/ML or POPLOG ML systems, so it would be very helpful
if you could supply us with complete descriptions of your environments. It would also be
worth considering libraries for other languages such as CAML, Common Lisp, Scheme, and
Modula-3.

One of our first tasks should be to set out some general guidelines or principles for
designing the standard environment (e.g. to decide between curried vs uncurried versions
of functions). It is clear that one such guideline is to provide algorithmically efficient
primitives (e.g. a constant time rather than linear time substring operation). Another issue
requiring guidelines is where to introduce exceptions and how to name them.

John Reppy has drafted a very preliminary proposal for a STANDARD signature, with a
reference implementation structure Standard : STANDARD to specify the semantics. We’ll
send this out for your information in a separate message.

To keep the process manageable, I feel that it would be best to conduct discussions
among the implementors via email. At appropriate points we can circulate proposals to a
wider audience via the sml-impl list or the sml-list. It would of course be most productive
to conduct the discussion with as little flaming as possible. Here is the proposed list of
participants:

Standard ML of New Jersey:



Andrew Appel appel@princeton.edu

Emden Gansner erg@ulysses.att.com

Lal George george@research.att.com

Dave MacQueen macqueen@research.att.com
John Reppy jhr@research.att.com

Poly/ML:

Mike Crawley mjc@abstract-hardware-1td.co.uk
Simon Finn simon@abstract-hardware-1td.co.uk
Mike Fourman mikef@lfcs.edinburgh.ac.uk

Dave Matthews dcjm@computer-lab.cambridge.ac.uk

POPLOG/ML:
R. J. Duncan robd@cogs.sussex.ac.uk
Simon Nichols simonn@cogs .sussex.ac.uk

Harlequin:

Nick Haines nickh@harlequin.co.uk

Edinburgh:

Dave Berry db@lfcs.ed.ac.uk

Could each implementation group please respond with your comments on the issues and
the strategy I have described above? I hope you will decide to join us in this effort, since
we will all benefit if we are successful.



